Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 217: 116931, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417450

RESUMO

The hypothalamus and insular cortex play an essential role in the integration of endocrine and homeostatic signals and their impact on food intake. Resting-state functional connectivity alterations of the hypothalamus, posterior insula (PINS) and anterior insula (AINS) are modulated by metabolic states and caloric intake. Nevertheless, a deeper understanding of how these factors affect the strength of connectivity between hypothalamus, PINS and AINS is missing. This study investigated whether effective (directed) connectivity within this network varies as a function of prandial states (hunger vs. satiety) and energy availability (glucose levels and/or hormonal modulation). To address this question, we measured twenty healthy male participants of normal weight twice: once after 36 â€‹h of fasting (except water consumption) and once under satiated conditions. During each session, resting-state functional MRI (rs-fMRI) and hormone concentrations were recorded before and after glucose administration. Spectral dynamic causal modeling (spDCM) was used to assess the effective connectivity between the hypothalamus and anterior and posterior insula. Using Bayesian model selection, we observed that the same model was identified as the most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition enhanced the strength of the forward connections from PINS to AINS and reduced the strength of backward connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS was positively related to plasma cortisol levels in the hunger condition, mainly before glucose administration. However, there was no direct relationship between glucose treatment and effective connectivity. Our findings suggest that prandial states modulate connectivity between PINS and AINS and relate to theories of interoception and homeostatic regulation that invoke hierarchical relations between posterior and anterior insula.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Glucose/farmacologia , Fome/fisiologia , Hipotálamo/diagnóstico por imagem , Hipotálamo/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Resposta de Saciedade/fisiologia , Administração Oral , Adulto , Teorema de Bayes , Glicemia/metabolismo , Mapeamento Encefálico , Jejum/fisiologia , Glucose/administração & dosagem , Humanos , Interocepção/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem
2.
Brain Imaging Behav ; 10(1): 105-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25759287

RESUMO

Social neuroscience studies have shown that the ventral striatum (VS), a highly reward-sensitive brain area, is activated when participants win competitive tasks. However, in these settings winning often entails both avoiding punishment and punishing the opponent. It is thus unclear whether the rewarding properties of winning are mainly associated to punishment avoidance, or if punishing the opponent can be additionally gratifying. In the present paper we explored the neurophysiological correlates of each outcome, aiming to better understand the development of aggression episodes. We previously introduced a competitive reaction time task that separates both effects: in half of the won trials, participants can physically punish their opponent (active trials), whereas in the other half they can only avoid a punishment (passive trials). We performed functional connectivity analysis seeded in the VS to test for differential network interactions in active compared to passive trials. The VS showed greater connectivity with areas involved in reward valuation (orbitofrontal cortex), arousal (dorsal thalamus and posterior insula), attention (inferior occipital gyrus), and motor control (supplementary motor area) in active compared to passive trials, whereas connectivity between the VS and the inferior frontal gyrus decreased. Interindividual variability in connectivity strength between VS and posterior insula was related to aggressive behavior, whereas connectivity between VS and supplementary motor area was related to faster reaction times in active trials. Our results suggest that punishing a provoking opponent when winning might adaptively favor a "competitive state" in the course of an aggressive interaction.


Assuntos
Agressão/fisiologia , Estriado Ventral/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Punição , Tempo de Reação , Tálamo/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA