Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Health Serv Res ; 24(1): 336, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481315

RESUMO

BACKGROUND: Recruiting large cohorts efficiently can speed the translation of findings into care across a range of scientific disciplines and medical specialties. Recruitment can be hampered by factors such as financial barriers, logistical concerns, and lack of resources for patients and clinicians. These and other challenges can lead to underrepresentation in groups such as rural residents and racial and ethnic minorities. Here we discuss the implementation of various recruitment strategies for enrolling participants into a large, prospective cohort study, assessing the need for adaptations and making them in real-time, while maintaining high adherence to the protocol and high participant satisfaction. METHODS: While conducting a large, prospective trial of a multi-cancer early detection blood test at Geisinger, an integrated health system in central Pennsylvania, we monitored recruitment progress, adherence to the protocol, and participants' satisfaction. Tracking mechanisms such as paper records, electronic health records, research databases, dashboards, and electronic files were utilized to measure each outcome. We then reviewed study procedures and timelines to list the implementation strategies that were used to address barriers to recruitment, protocol adherence and participant satisfaction. RESULTS: Adaptations to methods that contributed to achieving the enrollment goal included offering multiple recruitment options, adopting group consenting, improving visit convenience, increasing the use of electronic capture and the tracking of data and source documents, staffing optimization via leveraging resources external to the study team when appropriate, and integrating the disclosure of study results into routine clinical care without adding unfunded work for clinicians. We maintained high protocol adherence and positive participant experience as exhibited by a very low rate of protocol deviations and participant complaints. CONCLUSION: Recruiting rapidly for large studies - and thereby facilitating clinical translation - requires a nimble, creative approach that marshals available resources and changes course according to data. Planning a rigorous assessment of a study's implementation outcomes prior to study recruitment can further ground study adaptations and facilitate translation into practice. This can be accomplished by proactively and continuously assessing and revising implementation strategies.


Assuntos
Detecção Precoce de Câncer , Testes Hematológicos , Humanos , Pennsylvania , Estudos Prospectivos , Neoplasias
2.
JAMA Netw Open ; 6(10): e2338995, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870835

RESUMO

Importance: HFE gene-associated hereditary hemochromatosis type 1 (HH1) is underdiagnosed, resulting in missed opportunities for preventing morbidity and mortality. Objective: To assess whether screening for p.Cys282Tyr homozygosity is associated with recognition and management of asymptomatic iron overload. Design, Setting, and Participants: This cross-sectional study obtained data from the Geisinger MyCode Community Health Initiative, a biobank of biological samples and linked electronic health record data from a rural, integrated health care system. Participants included those who received a p.Cys282Tyr homozygous result via genomic screening (MyCode identified), had previously diagnosed HH1 (clinically identified), and those negative for p.Cys282Tyr homozygosity between 2017 and 2018. Data were analyzed from April 2020 to August 2023. Exposure: Disclosure of a p.Cys282Tyr homozygous result. Main Outcomes and Measures: Postdisclosure management and HFE-associated phenotypes in MyCode-identified participants were analyzed. Rates of HFE-associated phenotypes in MyCode-identified participants were compared with those of clinically identified participants. Relevant laboratory values and rates of laboratory iron overload among participants negative for p.Cys282Tyr homozygosity were compared with those of MyCode-identified participants. Results: A total of 86 601 participants had available exome sequences at the time of analysis, of whom 52 994 (61.4%) were assigned female at birth, and the median (IQR) age was 62.0 (47.0-73.0) years. HFE p.Cys282Tyr homozygosity was disclosed to 201 participants, of whom 57 (28.4%) had a prior clinical HH1 diagnosis, leaving 144 participants who learned of their status through screening. There were 86 300 individuals negative for p.Cys282Tyr homozygosity. After result disclosure, among MyCode-identified participants, 99 (68.8%) had a recommended laboratory test and 36 (69.2%) with laboratory or liver biopsy evidence of iron overload began phlebotomy or chelation. Fifty-three (36.8%) had iron overload; rates of laboratory iron overload were higher in MyCode-identified participants than participants negative for p.Cys282Tyr homozygosity (females: 34.1% vs 2.1%, P < .001; males: 39.0% vs 2.9%, P < .001). Iron overload (females: 34.1% vs 79.3%, P < .001; males: 40.7% vs 67.9%, P = .02) and some liver-associated phenotypes were observed at lower frequencies in MyCode-identified participants compared with clinically identified individuals. Conclusions and Relevance: Results of this cross-sectional study showed the ability of genomic screening to identify undiagnosed iron overload and encourage relevant management, suggesting the potential benefit of population screening for HFE p.Cys282Tyr homozygosity. Further studies are needed to examine the implications of genomic screening for health outcomes and cost-effectiveness.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Masculino , Recém-Nascido , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Hemocromatose/diagnóstico , Hemocromatose/genética , Hemocromatose/terapia , Estudos Transversais , Proteína da Hemocromatose/genética , Sobrecarga de Ferro/diagnóstico , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/complicações , Testes Genéticos
3.
Front Genet ; 13: 883073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692820

RESUMO

Introduction: DNA-based population screening has been proposed as a public health solution to identify individuals at risk for serious health conditions who otherwise may not present for medical care. The clinical utility and public health impact of DNA-based population screening is a subject of active investigation. Geisinger, an integrated healthcare delivery system, was one of the first healthcare systems to implement DNA screening programs (MyCode Community Health Initiative (MyCode) and clinical DNA screening pilot) that leverage exome data to identify individuals at risk for developing conditions with potential clinical actionability. Here, we demonstrate the use of an implementation science framework, RE-AIM (Reach, Effectiveness, Adoption, Implementation and Maintenance), to conduct a post-hoc evaluation and report outcomes from these two programs to inform the potential impact of DNA-based population screening. Methods: Reach and Effectiveness outcomes were determined from the MyCode research program, while Adoption and Implementation outcomes were measured using the clinical DNA screening pilot. Reach was defined as the number of patients who were offered and consented to participate in MyCode. Effectiveness of DNA screening was measured by reviewing MyCode program publications and synthesizing findings from themes. Adoption was measured by the total number of DNA screening tests ordered by clinicians at the clinical pilot sites. Implementation was assessed by interviewing a subset of clinical pilot clinicians about the deployment of and recommended adaptations to the pilot that could inform future program dissemination. Results: Reach: As of August 2020, 68% (215,078/316,612) of individuals approached to participate in the MyCode program consented. Effectiveness: Published evidence reported from MyCode demonstrates that DNA screening identifies at-risk individuals more comprehensively than clinical ascertainment based on phenotypes or personal/family history. Adoption: From July 2018 to June 2021, a total of 1,026 clinical DNA screening tests were ordered by 60 clinicians across the three pilot clinic sites. Implementation: Interviews with 14 clinicians practicing at the pilot clinic sites revealed motivation to provide patients with DNA screening results and yielded future implementation strategies. Conclusion: The RE-AIM framework offers a pragmatic solution to organize, analyze, and report outcomes across differently resourced and designed precision health programs that include genomic sequencing and return of clinically actionable genomic information.

4.
Health Aff (Millwood) ; 37(5): 757-764, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29733722

RESUMO

Health care delivery is increasingly influenced by the emerging concepts of precision health and the learning health care system. Although not synonymous with precision health, genomics is a key enabler of individualized care. Delivering patient-centered, genomics-informed care based on individual-level data in the current national landscape of health care delivery is a daunting challenge. Problems to overcome include data generation, analysis, storage, and transfer; knowledge management and representation for patients and providers at the point of care; process management; and outcomes definition, collection, and analysis. Development, testing, and implementation of a genomics-informed program requires multidisciplinary collaboration and building the concepts of precision health into a multilevel implementation framework. Using the principles of a learning health care system provides a promising solution. This article describes the implementation of population-based genomic medicine in an integrated learning health care system-a working example of a precision health program.


Assuntos
Prestação Integrada de Cuidados de Saúde/organização & administração , Genômica , Assistência Centrada no Paciente/organização & administração , Medicina de Precisão , Feminino , Humanos , Aprendizagem , Masculino , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA