Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Craniofac Surg ; 24(5): 1593-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24036733

RESUMO

BACKGROUND: Despite widespread use of adjuvant irradiation for head and neck cancer, the extent of damage to the underlying bone is not fully understood but is associated with pathologic fractures, nonunion, and osteoradionecrosis. The authors' laboratory previously demonstrated that radiation significantly impedes new bone formation in the murine mandible. We hypothesize that the detrimental effects of human equivalent radiation on the murine mandible results in a dose-dependent degradation in traditional micro-computed tomography (micro-CT) metrics. METHODS: Fifteen male Sprague-Dawley rats were randomized into 3 radiation dosage groups: low (5.91 Gy), middle (7 Gy), and high (8.89 Gy), delivered in 5 daily fractions. These dosages approximated 75%, 100%, and 150%, respectively, of the biologically equivalent dose that the human mandible receives during radiation treatment. Hemimandibles were harvested 56 days after radiation and scanned using micro-CT. Bone mineral density, tissue mineral density, and bone volume fraction were measured along with microdensitometry measurements. RESULTS: Animals demonstrated dose-dependent adverse effects of mucositis, alopecia, weight loss, and mandibular atrophy with increasing radiation. Traditional micro-CT parameters were not sensitive enough to demonstrate statistically significant differences between the radiated groups; however, microdensitometry analysis showed clear differences between radiated groups and statistically significant changes between radiated and nonradiated groups. CONCLUSIONS: The authors report dose-dependent and clinically significant adverse effects of fractionated human equivalent radiation to the murine mandible. The authors further report the limited capacity of traditional micro-CT metrics to adequately capture key changes in bone composition and present microdensitometric histogram analysis to demonstrate significant radiation-induced changes in mineralization patterns.


Assuntos
Modelos Animais de Doenças , Mandíbula/diagnóstico por imagem , Mandíbula/efeitos da radiação , Osteorradionecrose/diagnóstico por imagem , Osteorradionecrose/patologia , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Microtomografia por Raio-X , Animais , Densidade Óssea/efeitos da radiação , Relação Dose-Resposta à Radiação , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Mandíbula/patologia , Radioterapia Adjuvante/efeitos adversos , Ratos , Ratos Sprague-Dawley
2.
Bone ; 52(2): 712-717, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22885239

RESUMO

PURPOSE: Adjuvant radiotherapy in the management of head and neck cancer remains severely debilitating. Fortunately, newly developed agents aimed at decreasing radiation-induced damage have shown great promise. Amifostine (AMF) is a compound, which confers radio-protection to the exposed normal tissues, such as bone. Our intent is to utilize Raman spectroscopy to demonstrate how AMF preserves the mineral composition of the murine mandible following human equivalent radiation. METHODS: Sprague Dawley rats were randomized into 3 experimental groups: control (n=5), XRT (n=5), and AMF-XRT (n=5). Both XRT and AMF groups underwent bioequivalent radiation of 70Gy in 5 fractions to the left hemimandible. AMF-XRT received Amifostine prior to radiation. Fifty-six days post-radiation, the hemimandibles were harvested, and Raman spectra were taken in the region of interest spanning 2mm behind the last molar. Bone mineral and matrix-specific Raman bands were analyzed using one-way ANOVA, with statistical significance at p<0.05. RESULTS: The full-width at half-maximum of the primary phosphate band (FWHM) and the ratio of carbonate/phosphate intensities demonstrated significant differences between AMF-XRT versus XRT (p<0.01) and XRT versus control (p<0.01). There was no difference between AMF-XRT and control (p>0.05) in both Raman metrics. Computer-aided spectral subtraction further confirmed these results where AMF-XRT was spectrally similar to the control. Interestingly, the collagen cross-link ratio did not differ between XRT and AMF-XRT (p<0.01) but was significantly different from the control (p<0.01). CONCLUSION: Our novel findings demonstrate that AMF prophylaxis maintains and protects bone mineral quality in the setting of radiation. Raman spectroscopy is an emerging and exceptionally attractive clinical translational technology to investigate and monitor both the destructive effects of radiation and the therapeutic remediation of AMF on the structural, physical and chemical qualities of bone.


Assuntos
Amifostina/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Mandíbula/efeitos dos fármacos , Mandíbula/efeitos da radiação , Protetores contra Radiação/farmacologia , Análise Espectral Raman , Animais , Carbonatos/metabolismo , Humanos , Masculino , Camundongos , Fosfatos/metabolismo , Ratos , Ratos Sprague-Dawley , Raios X
3.
Bone ; 52(1): 318-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085084

RESUMO

BACKGROUND: Medically based efforts and alternative treatment strategies to prevent or remediate the corrosive effects of radiotherapy on pathologic fracture healing have failed to produce clear and convincing evidence of success. Establishing an effective pharmacologic option to prevent or treat the development of non-unions in this setting could have immense therapeutic potential. Experimental studies have shown that deferoxamine (DFO), an iron-chelating agent, bolsters vascularity and subsequently enhances normal fracture healing when injected locally into a fracture callus in long bone animal models. Since radiotherapy is known to impede angiogenesis, we hypothesized that the pharmacologic addition of DFO would serve to mitigate the effects of radiotherapy on new vessel formation in vitro and in vivo. MATERIALS AND METHODS: In vitro investigation of angiogenesis was conducted utilizing HUVEC cells in Matrigel. Endothelial tubule formation assays were divided into four groups: Control, Radiated, Radiated+Low-Dose DFO and Radiated+High-Dose DFO. Tubule formation was quantified microscopically and video recorded for the four groups simultaneously during the experiment. In vivo, three groups of Sprague-Dawley rats underwent external fixator placement and fracture osteotomy of the left mandible. Two groups received pre-operative fractionated radiotherapy, and one of these groups was treated with DFO after fracture repair. After 40 days, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. RESULTS: In vitro, endothelial tubule formation assays demonstrated that DFO mitigated the deleterious effects of radiation on angiogenesis. Further, high-dose DFO cultures appeared to organize within 2h of incubation and achieved a robust network that was visibly superior to all other experimental groups in an accelerated fashion. In vivo, animals subjected to a human equivalent dose of radiotherapy (HEDR) and left mandibular fracture demonstrated quantifiably diminished µCT metrics of vascular density, as well as a 75% incidence of associated non-unions. The addition of DFO in this setting markedly improved vascularity as demonstrated with 3D angiographic modeling. In addition, we observed an increased incidence of bony unions in the DFO treated group when compared to radiated fractures without treatment (67% vs. 25% respectively). CONCLUSION: Our data suggest that selectively targeting angiogenesis with localized DFO injections is sufficient to remediate the associated severe vascular diminution resulting from a HEDR. Perhaps the most consequential and clinically relevant finding was the ability to reduce the incidence of non-unions in a model where fracture healing was not routinely observed.


Assuntos
Desferroxamina/administração & dosagem , Consolidação da Fratura , Radioterapia , Animais , Células Cultivadas , Humanos , Neovascularização Patológica , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA