Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29223747

RESUMO

Parasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited and parasite resistance to the existing anthelmintic compounds is a global threat. We have developed an INVertebrate Automated Phenotyping Platform (INVAPP) for high-throughput, plate-based chemical screening, and an algorithm (Paragon) which allows screening for compounds that have an effect on motility and development of parasitic worms. We have validated its utility by determining the efficacy of a panel of known anthelmintics against model and parasitic nematodes: Caenorhabditis elegans, Haemonchus contortus, Teladorsagia circumcincta, and Trichuris muris. We then applied the system to screen the Pathogen Box chemical library in a blinded fashion and identified compounds already known to have anthelmintic or anti-parasitic activity, including tolfenpyrad, auranofin, and mebendazole; and 14 compounds previously undescribed as anthelmintics, including benzoxaborole and isoxazole chemotypes. This system offers an effective, high-throughput system for the discovery of novel anthelmintics.


Assuntos
Anti-Helmínticos/isolamento & purificação , Automação Laboratorial/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Nematoides/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Algoritmos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Automação Laboratorial/métodos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Haemonchus/efeitos dos fármacos , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/parasitologia , Fenótipo
2.
PLoS One ; 6(7): e22390, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818319

RESUMO

Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C. elegans is a suitable system for studying parasitic nematode genes that may be involved in drug resistance.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Canais de Cloreto/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Haemonchus/metabolismo , Ivermectina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Bioensaio , Caenorhabditis elegans/genética , Canais de Cloreto/genética , DNA Complementar/genética , Proteínas de Fluorescência Verde/metabolismo , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Movimento/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/metabolismo
3.
Hum Mol Genet ; 20(2): 245-60, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20962036

RESUMO

Spinal muscular atrophy (SMA), an autosomal recessive genetic disorder, is characterized by the selective degeneration of lower motor neurons, leading to muscle atrophy and, in the most severe cases, paralysis and death. Deletions and point mutations cause reduced levels of the widely expressed survival motor neuron (SMN) protein, which has been implicated in a range of cellular processes. The mechanisms underlying disease pathogenesis are unclear, and there is no effective treatment. Several animal models have been developed to study SMN function including the nematode, Caenorhabditis elegans, in which a large deletion in the gene homologous to SMN, smn-1, results in neuromuscular dysfunction and larval lethality. Although useful, this null mutant, smn-1(ok355), is not well suited to drug screening. We report the isolation and characterization of smn-1(cb131), a novel allele encoding a substitution in a highly conserved residue of exon 2, resembling a point mutation found in a patient with type IIIb SMA. The smn-1(cb131) animals display milder yet similar defects when compared with the smn-1 null mutant. Using an automated phenotyping system, mutants were shown to swim slower than wild-type animals. This phenotype was used to screen a library of 1040 chemical compounds for drugs that ameliorate the defect, highlighting six for subsequent testing. 4-aminopyridine, gaboxadol hydrochloride and N-acetylneuraminic acid all rescued at least one aspect of smn-1 phenotypic dysfunction. These findings may assist in accelerating the development of drugs for the treatment of SMA.


Assuntos
Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , 4-Aminopiridina/química , 4-Aminopiridina/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Humanos , Dados de Sequência Molecular , Atividade Motora/efeitos dos fármacos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Mutação Puntual/genética , Alinhamento de Sequência , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Invert Neurosci ; 8(2): 83-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18481128

RESUMO

We applied compartmental computer modeling to test a model of spike shape change in the jellyfish, Polyorchis penicillatus, to determine whether adaptive spike shortening can be attributed to the inactivation properties of a potassium channel. We modeled the jellyfish outer nerve-ring as a continuous linear segment, using ion channel and membrane properties derived in earlier studies. The model supported action potentials that shortened as they propagated away from the site of initiation and this was found to be largely independent of potassium channel inactivation. Spike broadening near the site of initiation was found to be due to a depolarization plateau that collapsed as two spikes spread from the point of initiation. The lifetime of this plateau was found to depend critically on the inward current flux and the space constant of the membrane. These data suggest that the spike shape changes may be due not only to potassium channel inactivation, but also to the passive properties of the membrane.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Animais , Vias Neurais/fisiologia , Canais de Potássio , Cifozoários , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA