Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35206441

RESUMO

The benefits of biophilic interior design have been recognized by healthcare facilities, but residential environments receive relatively less attention with respect to improving the health of people living with chronic diseases. Recent "stay-at-home" restrictions due to the COVID-19 pandemic further emphasized the importance of creating interior spaces that directly and indirectly support physical and mental health. In this viewpoint article, we discuss opportunities for combining biophilic interventions with interior design, fostering disease-specific self-care. We provide examples of designing residential spaces integrating biophilic interventions, light therapy, relaxation opportunities, mindfulness meditation, listening to music, physical activities, aromatherapy, and quality sleep. These modalities can provide the clinical benefits of reducing migraine headaches and chronic pain, as well as improving depressive symptoms. The disease-specific interior environment can be incorporated into residential homes, workplaces, assisted-living residences, hospitals and hospital at home programs. This work aims to promote a cross-disciplinary dialogue towards combining biophilic design and advances in lifestyle medicine to create therapeutic interior environments and to improve healthcare outcomes.


Assuntos
COVID-19 , Dor Crônica , Transtornos de Enxaqueca , COVID-19/epidemiologia , Dor Crônica/terapia , Depressão/terapia , Humanos , Transtornos de Enxaqueca/terapia , Pandemias , SARS-CoV-2 , Autocuidado
2.
Front Pharmacol ; 12: 612602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33972825

RESUMO

To improve long-term outcomes of therapies for chronic diseases, health promotion and lifestyle modifications are the most promising and sustainable strategies. In addition, advances in digital technologies provide new opportunities to address limitations of drug-based treatments, such as medication non-adherence, adverse effects, toxicity, drug resistance, drug shortages, affordability, and accessibility. Pharmaceutical drugs and biologics can be combined with digital health technologies, including mobile medical apps (digital therapeutics), which offer additional clinical benefits and cost-effectiveness. Promises of drug+digital combination therapies are recognized by pharmaceutical and digital health companies, opening opportunities for integrating pharmacotherapies with non-pharmacological interventions (metapharmacology). Herein we present unique features of digital health technologies which can deliver personalized self-care modalities such as breathing exercises, mindfulness meditation, yoga, physical activity, adequate sleep, listening to preferred music, forgiveness and gratitude. Clinical studies reveal how aforementioned complimentary practices may support treatments of epilepsy, chronic pain, depression, cancer, and other chronic diseases. This article also describes how digital therapies delivering "medicinal" self-care and other non-pharmacological interventions can also be personalized by accounting for: 1) genetic risks for comorbidities, 2) adverse childhood experiences, 3) increased risks for viral infections such as seasonal influenza, or COVID-19, and 4) just-in-time stressful and traumatic circumstances. Development and implementation of personalized pharmacological-behavioral combination therapies (precision metapharmacology) require aligning priorities of key stakeholders including patients, research communities, healthcare industry, regulatory and funding agencies. In conclusion, digital technologies enable integration of pharmacotherapies with self-care, lifestyle interventions and patient empowerment, while concurrently advancing patient-centered care, integrative medicine and digital health ecosystems.

3.
Front Neurol ; 10: 277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972009

RESUMO

Digital therapeutics (software as a medical device) and mobile health (mHealth) technologies offer a means to deliver behavioral, psychosocial, disease self-management and music-based interventions to improve therapy outcomes for chronic diseases, including pain and epilepsy. To explore new translational opportunities in developing digital therapeutics for neurological disorders, and their integration with pharmacotherapies, we examined analgesic and antiseizure effects of specific musical compositions in mouse models of pain and epilepsy. The music playlist was created based on the modular progression of Mozart compositions for which reduction of seizures and epileptiform discharges were previously reported in people with epilepsy. Our results indicated that music-treated mice exhibited significant analgesia and reduction of paw edema in the carrageenan model of inflammatory pain. Among analgesic drugs tested (ibuprofen, cannabidiol (CBD), levetiracetam, and the galanin analog NAX 5055), music intervention significantly decreased paw withdrawal latency difference in ibuprofen-treated mice and reduced paw edema in combination with CBD or NAX 5055. To the best of our knowledge, this is the first animal study on music-enhanced antinociceptive activity of analgesic drugs. In the plantar incision model of surgical pain, music-pretreated mice had significant reduction of mechanical allodynia. In the corneal kindling model of epilepsy, the cumulative seizure burden following kindling acquisition was lower in animals exposed to music. The music-treated group also exhibited significantly improved survival, warranting further research on music interventions for preventing Sudden Unexpected Death in Epilepsy (SUDEP). We propose a working model of how musical elements such as rhythm, sequences, phrases and punctuation found in K.448 and K.545 may exert responses via parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. Based on our findings, we discuss: (1) how enriched environment (EE) can serve as a preclinical surrogate for testing combinations of non-pharmacological modalities and drugs for the treatment of pain and other chronic diseases, and (2) a new paradigm for preclinical and clinical development of therapies leading to drug-device combination products for neurological disorders, depression and cancer. In summary, our present results encourage translational research on integrating non-pharmacological and pharmacological interventions for pain and epilepsy using digital therapeutics.

4.
Front Hum Neurosci ; 12: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780310

RESUMO

Digital health technologies for people with epilepsy (PWE) include internet-based resources and mobile apps for seizure management. Since non-pharmacological interventions, such as listening to specific Mozart's compositions, cognitive therapy, psychosocial and educational interventions were shown to reduce epileptic seizures, these modalities can be integrated into mobile software and delivered by mobile medical apps as digital therapeutics. Herein, we describe: (1) a survey study among PWE about preferences to use mobile software for seizure control, (2) a rationale for developing digital therapies for epilepsy, (3) creation of proof-of-concept mobile software intended for use as an adjunct digital therapeutic to reduce seizures, and (4) broader applications of digital therapeutics for the treatment of epilepsy and other chronic disorders. A questionnaire was used to survey PWE with respect to preferred features in a mobile app for seizure control. Results from the survey suggested that over 90% of responders would be interested in using a mobile app to manage their seizures, while 75% were interested in listening to specific music that can reduce seizures. To define digital therapeutic for the treatment of epilepsy, we designed and created a proof-of-concept mobile software providing digital content intended to reduce seizures. The rationale for all components of such digital therapeutic is described. The resulting web-based app delivered a combination of epilepsy self-care, behavioral interventions, medication reminders and the antiseizure music, such as the Mozart's sonata K.448. To improve long-term patient engagement, integration of mobile medical app with music and multimedia streaming via smartphones, tablets and computers is also discussed. This work aims toward development and regulatory clearance of software as medical device (SaMD) for seizure control, yielding the adjunct digital therapeutic for epilepsy, and subsequently a drug-device combination product together with specific antiseizure medications. Mobile medical apps, music, therapeutic video games and their combinations with prescription medications present new opportunities to integrate pharmacological and non-pharmacological interventions for PWE, as well as those living with other chronic disorders, including depression and pain.

6.
Neurochem Res ; 42(7): 1983-1994, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382595

RESUMO

The potential clinical utility of galanin peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia. In addition to possessing potent anticonvulsant efficacy, galanin analogs are analgesic in various assays. The purpose of these studies was to evaluate the lead galanin receptor type 2 (GalR2)-preferring analog, NAX 810-2, in various pain assays, as well as determine any potential for insulin inhibition, growth hormone stimulation, and cognitive impairment. NAX 810-2 was evaluated in mouse (carrageenan, formalin, tail flick, plantar incision) and rat pain models (partial sciatic nerve ligation). NAX 810-2 dose-dependently increased paw withdrawal latency following plantar administration of carrageenan (ED50 4.7 mg/kg). At a dose of 8 mg/kg, NAX 810-2 significantly attenuated nociceptive behaviors following plantar administration of formalin, and this was observed for both phase I (acute) and phase II (inflammatory) components of the formalin behavioral response. NAX-810-2 was active at higher doses in the mouse tail flick model (ED50 20.2 mg/kg) and similarly, reduced mechanical allodynia following plantar incision in mice at a dose of 24 mg/kg. NAX 810-2 also reduced mechanical allodynia in the partial sciatic nerve ligation model at a dose of 4 mg/kg. In addition, NAX 810-2 did not impair insulin secretion at doses of 2.5 and 8 mg/kg (acutely) or at a dose of 8 mg/kg given daily for 5 days. Similarly, 8 mg/kg (twice daily, 5 days) of NAX 810-2 did not increase growth hormone levels. These results demonstrate that NAX 810-2 possesses a favorable pre-clinical profile as a novel and first-in-class analgesic.


Assuntos
Analgésicos/metabolismo , Analgésicos/uso terapêutico , Galanina/análogos & derivados , Dor/tratamento farmacológico , Receptor Tipo 2 de Galanina/metabolismo , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Galanina/metabolismo , Galanina/farmacologia , Galanina/uso terapêutico , Masculino , Camundongos , Dor/patologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
7.
Epilepsia ; 58(2): 239-246, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28098336

RESUMO

OBJECTIVE: Potential clinical utility of galanin or peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia due to galanin receptor subtype 1 (GalR1) activation. NAX 810-2, a galanin receptor subtype 2 (GalR2)-preferring galanin analog, possesses 15-fold greater affinity for GalR2 over GalR1 and protects against seizures in the mouse 6 Hz, corneal kindling, and Frings audiogenic seizure models. The purpose of these studies was to further evaluate the preclinical efficacy and pharmacokinetics of NAX 810-2 in mice. METHODS: NAX 810-2 was administered by intravenous (i.v.; tail vein, bolus) injection to fully kindled (corneal kindling assay) or naive CF-1 mice (6 Hz assay and pharmacokinetic studies). Plasma NAX 810-2 levels were determined from trunk blood samples. NAX 810-2 was also added to human plasma at various concentrations for determination of plasma protein binding. RESULTS: In the mouse corneal kindling model, NAX 810-2 dose-dependently blocked seizures following intravenous administration (median effective dose [ED50 ], 0.5 mg/kg). In the mouse 6 Hz (32 mA) seizure model, it was demonstrated that NAX 810-2 dose-dependently blocked seizures following bolus administration (0.375-1.5 mg/kg, i.v.; ED50 , 0.7 mg/kg), with a time-to-peak effect of 0.5 h posttreatment. Motor impairment was observed at 1.5 mg/kg, i.v., whereas one-half of this dose, 0.75 mg/kg, i.v., was maximally effective in the 6 Hz test. Plasma levels of NAX 810-2 show linear pharmacokinetics following intravenous administration and a half-life of 1.2 h. Functional agonist activity studies demonstrate that NAX 810-2 effectively activates GalR2 at therapeutic concentrations. SIGNIFICANCE: These studies further suggest the potential utility of NAX 810-2 as a novel therapy for epilepsy.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Receptor Tipo 2 de Galanina/química , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Área Sob a Curva , Córnea/inervação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica/efeitos adversos , Galanina/análogos & derivados , Galanina/farmacocinética , Galanina/uso terapêutico , Injeções Intravenosas , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/etiologia , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/antagonistas & inibidores , Convulsões/complicações , Convulsões/etiologia , Fatores de Tempo
9.
Curr Clin Pharmacol ; 11(2): 128-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27262323

RESUMO

Merging pharmaceutical and digital (mobile health, mHealth) ingredients to create new therapies for chronic diseases offers unique opportunities for natural products such as omega-3 polyunsaturated fatty acids (n-3 PUFA), curcumin, resveratrol, theanine, or α-lipoic acid. These compounds, when combined with pharmaceutical drugs, show improved efficacy and safety in preclinical and clinical studies of epilepsy, neuropathic pain, osteoarthritis, depression, schizophrenia, diabetes and cancer. Their additional clinical benefits include reducing levels of TNFα and other inflammatory cytokines. We describe how pleiotropic natural products can be developed as bioactive incentives within the network pharmacology together with pharmaceutical drugs and self-care interventions. Since approximately 50% of chronically-ill patients do not take pharmaceutical drugs as prescribed, psychobehavioral incentives may appeal to patients at risk for medication non-adherence. For epilepsy, the incentive-based network therapy comprises anticonvulsant drugs, antiseizure natural products (n-3 PUFA, curcumin or/and resveratrol) coupled with disease-specific behavioral interventions delivered by mobile medical apps. The add-on combination of antiseizure natural products and mHealth supports patient empowerment and intrinsic motivation by having a choice in self-care behaviors. The incentivized therapies offer opportunities: (1) to improve clinical efficacy and safety of existing drugs, (2) to catalyze patient-centered, disease self-management and behavior-changing habits, also improving health-related quality-of-life after reaching remission, and (3) merging copyrighted mHealth software with natural products, thus establishing an intellectual property protection of medical treatments comprising the natural products existing in public domain and currently promoted as dietary supplements. Taken together, clinical research on synergies between existing drugs and pleiotropic natural products, and their integration with self-care, music and mHealth, expands precision/personalized medicine strategies for chronic diseases via pharmacological-behavioral combination therapies.


Assuntos
Produtos Biológicos/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Telemedicina/métodos , Animais , Doença Crônica , Suplementos Nutricionais , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Autocuidado/métodos
10.
Proc Natl Acad Sci U S A ; 111(7): 2758-63, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24497506

RESUMO

A cone snail venom peptide, µO§-conotoxin GVIIJ from Conus geographus, has a unique posttranslational modification, S-cysteinylated cysteine, which makes possible formation of a covalent tether of peptide to its target Na channels at a distinct ligand-binding site. µO§-conotoxin GVIIJ is a 35-aa peptide, with 7 cysteine residues; six of the cysteines form 3 disulfide cross-links, and one (Cys24) is S-cysteinylated. Due to limited availability of native GVIIJ, we primarily used a synthetic analog whose Cys24 was S-glutathionylated (abbreviated GVIIJSSG). The peptide-channel complex is stabilized by a disulfide tether between Cys24 of the peptide and Cys910 of rat (r) NaV1.2. A mutant channel of rNaV1.2 lacking a cysteine near the pore loop of domain II (C910L), was >10(3)-fold less sensitive to GVIIJSSG than was wild-type rNaV1.2. In contrast, although rNaV1.5 was >10(4)-fold less sensitive to GVIIJSSG than NaV1.2, an rNaV1.5 mutant with a cysteine in the homologous location, rNaV1.5[L869C], was >10(3)-fold more sensitive than wild-type rNaV1.5. The susceptibility of rNaV1.2 to GVIIJSSG was significantly altered by treating the channels with thiol-oxidizing or disulfide-reducing agents. Furthermore, coexpression of rNaVß2 or rNaVß4, but not that of rNaVß1 or rNaVß3, protected rNaV1.1 to -1.7 (excluding NaV1.5) against block by GVIIJSSG. Thus, GVIIJ-related peptides may serve as probes for both the redox state of extracellular cysteines and for assessing which NaVß- and NaVα-subunits are present in native neurons.


Assuntos
Conotoxinas/toxicidade , Dissulfetos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neurônios/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Conotoxinas/genética , Conotoxinas/metabolismo , Cisteína/metabolismo , Primers do DNA/genética , DNA Complementar/genética , Dados de Sequência Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo
12.
Chem Biol Drug Des ; 77(1): 93-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20958922

RESUMO

Three-disulfide-bridged Ecballium elaterium trypsin inhibitor II (EETI-II) is a 28-residue peptide that belongs to the squash family of canonical trypsin inhibitors. Herein, we report synthesis and biological activity of three EETI-II analogs. In each of analog, a pair of cysteine residues forming a native disulfide bridge was individually replaced by a pair of selenocysteine residues. All selenopeptide analogs were chemically synthesized using the Fmoc protocol and subsequently folded in the presence of oxidized and reduced glutathione. The analogs containing a diselenide bridge displayed association constants with trypsin that ranged from 2.6 x 10(9) to 5.1 x 10(9) [M(-1) ]. Our results suggest that the selenopeptide analogs retained low nanomolar inhibitory potencies, and only the diselenide bridge adjacent to the inhibitory binding loop weakened the interactions with trypsin by approximately fivefold. We discuss these findings in the context of a broader use of selenopeptide analogs as proxies to study cysteine-rich peptides.


Assuntos
Dissulfetos/química , Dissulfetos/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Proteínas de Plantas , Selênio/química , Selênio/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/síntese química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Tripsina/metabolismo
13.
Curr Pharm Des ; 14(24): 2462-79, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18781995

RESUMO

Over two decades of research on venom peptides derived from cone snails ("conopeptides or conotoxins") has led to several compounds that have reached human clinical trials, most of them for the treatment of pain. Remarkably, none of the conopeptides in clinical development mediate analgesia through the opioid receptors, underlying the diverse and novel neuropharmacology evolved by Conus snails. These predatory animals produce an estimated approximately 100,000 distinct conotoxins, a vast majority yet to be discovered and characterized. The conopeptides studied to-date in animal models, have exhibited antinociceptive, antiepileptic, neuroprotective or cardioprotective activities. Screening results also suggest applications of conotoxins in cancer, neuromuscular and psychiatric disorders. Additional potentially important applications of conotoxin research are the discovery and validation of new therapeutic targets, also defining novel binding sites on already validated molecular targets. As the structural and functional diversity of conotoxins is being investigated, the Conus venoms continue to surprise with the plethora of neuropharmacological compounds and potential new therapeutics. This review summarizes recent efforts in the discovery of conopeptides, and their preclinical and clinical development.


Assuntos
Conotoxinas/uso terapêutico , Caramujo Conus/química , Desenho de Fármacos , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Ensaios Clínicos como Assunto , Conotoxinas/isolamento & purificação , Conotoxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Filogenia , Conformação Proteica , Canais de Sódio/metabolismo
14.
Curr Opin Chem Biol ; 12(4): 441-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18678277

RESUMO

Many ion channels are attractive therapeutic targets for the treatment of neurological or cardiovascular diseases; there is a continuous need for selective channel antagonists and/or agonists. Recently, several technologies have been developed that make exploration of the enormous diversity of venom-derived peptidic toxins more feasible. Integration of exogenomics with synthetic methods such as diselenide or fluorous bridges, backbone spacers, and N-to-C cyclization provides an emerging technology that promises to accelerate discovery and development of natural products based compounds. These drug-discovery efforts are complemented by novel approaches to modulate the activities of ion channels and receptors. Taken together, these technologies will advance our knowledge and understanding of ion channels and will accelerate their expansion as targets for first-in-class therapeutics.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Humanos , Canais Iônicos/metabolismo , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/farmacocinética , Neurotoxinas/farmacologia , Oxirredução , Peçonhas/química , Peçonhas/metabolismo , Peçonhas/farmacocinética , Peçonhas/farmacologia
15.
FEBS J ; 272(16): 4178-88, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098199

RESUMO

Post-translational isomerization of l-amino acids to d-amino acids is a subtle modification, not detectable by standard techniques such as Edman sequencing or MS. Accurate predictions require more sequences of modified polypeptides. A 46-amino-acid-long conotoxin, r11a, belonging to the I-superfamily was previously shown to have a d-Phe residue at position 44. In this report, we characterize two related peptides, r11b and r11c, with d-Phe and d-Leu, respectively, at the homologous position. Electrophysiological tests show that all three peptides induce repetitive activity in frog motor nerve, and epimerization of the single amino acid at the third position from the C-terminus attenuates the potency of r11a and r11b, but not that of r11c. Furthermore, r11c (but neither r11a nor r11b) also acts on skeletal muscle. We identified more cDNA clones encoding conopeptide precursors with Cys patterns similar to r11a/b/c. Although the predicted mature toxins have the same cysteine patterns, they belong to two different gene superfamilies. A potential correlation between the identity of the gene superfamily to which the I-conotoxin belongs and the presence or absence of a d-amino acid in the primary sequence is discussed. The great diversity of I-conopeptide sequences provides a rare opportunity for defining parameters that may be important for this most stealthy of all post-translational modifications. Our results indicate that neither the chemical nature of the side chain nor the precise vicinal sequence around the modified residue seem to be critical, but there may be favored loci for isomerization to a d-amino acid.


Assuntos
Aminoácidos/química , Conotoxinas/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Conotoxinas/isolamento & purificação , DNA Complementar , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA