Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 42(16): 3316-3328, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35256532

RESUMO

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/efeitos adversos , Animais , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/uso terapêutico , Trato Gastrointestinal , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Morfina/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Proteína Quinase C , Receptores Opioides , Receptores Opioides mu , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 114(46): 12309-12314, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087309

RESUMO

G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8-37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8-37-cholestanol, but not unconjugated CGRP8-37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8-37-cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund's adjuvant more effectively than unconjugated CGRP8-37 Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/genética , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Nociceptividade/fisiologia , Dor/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Antagonistas Adrenérgicos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Proteína Semelhante a Receptor de Calcitonina/antagonistas & inibidores , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Capsaicina/antagonistas & inibidores , Capsaicina/farmacologia , Colestanóis/farmacologia , Clatrina/antagonistas & inibidores , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endossomos/efeitos dos fármacos , Formaldeído/antagonistas & inibidores , Formaldeído/farmacologia , Adjuvante de Freund/antagonistas & inibidores , Adjuvante de Freund/farmacologia , Regulação da Expressão Gênica , Injeções Espinhais , Masculino , Camundongos , Microtomia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Dor/genética , Dor/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Técnicas de Cultura de Tecidos
3.
Am J Physiol Gastrointest Liver Physiol ; 299(3): G556-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20539005

RESUMO

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.


Assuntos
Dor/metabolismo , Pancreatite/complicações , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Aldeídos/toxicidade , Animais , Inibidores de Cisteína Proteinase/toxicidade , Feminino , Gânglios Espinais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Irritantes/toxicidade , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Nociceptores/fisiologia , Dor/etiologia , Pâncreas/efeitos dos fármacos , Pâncreas/inervação , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Óleos de Plantas/toxicidade , Medula Espinal/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/genética
4.
Am J Physiol Gastrointest Liver Physiol ; 298(1): G81-91, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19875705

RESUMO

The excitatory ion channel transient receptor potential ankyrin-1 (TRPA1) is prominently expressed by primary afferent neurons and is a mediator of inflammatory pain. Inflammatory agents can directly activate [e.g., hydroxynonenal (HNE), prostaglandin metabolites] or indirectly sensitize [e.g., agonists of protease-activated receptor (PAR(2))] TRPA1 to induce somatic pain and hyperalgesia. However, the contribution of TRPA1 to visceral pain is unknown. We investigated the role of TRPA1 in visceral hyperalgesia by measuring abdominal visceromotor responses (VMR) to colorectal distention (CRD) after intracolonic administration of TRPA1 agonists [mustard oil (MO), HNE], sensitizing agents [PAR(2) activating peptide (PAR(2)-AP)], and the inflammatory agent trinitrobenzene sulfonic acid (TNBS) in trpa1(+/+) and trpa1(-/-) mice. Sensory neurons innervating the colon, identified by retrograde tracing, coexpressed immunoreactive TRPA1, calcitonin gene-related peptide, and substance P, expressed TRPA1 mRNA and responded to MO with depolarizing currents. Intracolonic MO and HNE increased VMR to CRD and induced immunoreactive c-fos in spinal neurons in trpa1+/+ but not in trpa1(-/-) mice. Intracolonic PAR(2)-AP induced mechanical hyperalgesia in trpa1+/+ but not in trpa1(-/-) mice. TNBS-induced colitis increased in VMR to CRD and induced c-fos in spinal neurons in trpa1(+/+) but not in trpa1(-/-) mice. Thus TRPA1 is expressed by colonic primary afferent neurons. Direct activation of TRPA1 causes visceral hyperalgesia, and TRPA1 mediates PAR(2)-induced hyperalgesia. TRPA1 deletion markedly reduces colitis-induced mechanical hyperalgesia in the colon. Our results suggest that TRPA1 has a major role in visceral nociception and may be a therapeutic target for colonic inflammatory pain.


Assuntos
Colite/fisiopatologia , Hiperalgesia/fisiopatologia , Dor/fisiopatologia , Canais de Potencial de Receptor Transitório/metabolismo , Fibras Aferentes Viscerais/fisiologia , Aldeídos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/induzido quimicamente , Colo/inervação , Colo/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Vias Eferentes/fisiologia , Feminino , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mostardeira , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Dor/induzido quimicamente , Óleos de Plantas/farmacologia , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Medula Espinal/fisiologia , Substância P/metabolismo , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/genética , Fibras Aferentes Viscerais/efeitos dos fármacos
5.
J Biol Chem ; 279(29): 30670-9, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15128739

RESUMO

Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.


Assuntos
Receptores da Neurocinina-1/química , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Arrestinas/química , Arrestinas/metabolismo , Western Blotting , Cálcio/metabolismo , Linhagem Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Endocitose , Endossomos/metabolismo , Citometria de Fluxo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Cinética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Neurocinina-1/metabolismo , Temperatura , Fatores de Tempo , beta-Arrestina 1 , beta-Arrestinas , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA