Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36221165

RESUMO

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase , Lisina/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutaratos/metabolismo
2.
Orphanet J Rare Dis ; 16(1): 474, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772435

RESUMO

BACKGROUND: Diagnosis, treatment, and care of patients with rare diseases require multidisciplinary cooperation between medical and paramedical specialities and with patients and families. Innovative genetic diagnostics, whole exome and whole genome sequencing (WES, WGS) has enlarged the diagnostic toolkit but also increased the complexity of the endeavour. Structured multidisciplinary clinical pathways (CPW) can guide diagnosis, treatment, and care of patients with rare diseases, link scientific evidence to clinical practice and optimise clinical outcomes whilst maximising clinical efficiency. RESULTS: In contrast to the common approach of appending disease-specific CPWs to disease-specific guidelines, we suggest a generic CPW manoeuvring the patient along the way of finding the correct diagnosis by applying the best diagnostic strategy into an appropriate system of treatment and care. Available guidelines can be integrated into the generic CPW in the course of its application. The approach also applies to situations where a diagnosis remains unsolved. The backbone of the generic CPW is a set of multidisciplinary structured case conferences projecting and evaluating diagnostic and/or therapeutic steps, enforcing to integrate best scientific evidence with clinical experience. The generic CPW is stated as a flowchart and a checklist which can be used to record and document parsimoniously the structure, process and results of a patient's pathway, but also as a data model for research. It was applied in a multicentre setting with 587 cases each with a presumptive diagnosis of a rare disease. In 369 cases (62.8%) a diagnosis could be confirmed, and multidisciplinary treatment and/or care was initiated. The median process time from first contact until confirmation of diagnosis by WES was 109 days and much shorter than diagnostic delays reported in the literature. Application of the CPW is illustrated by two case reports. CONCLUSIONS: Our model is a tool to change the diagnostic odyssey into an organised and trackable route. It can also be used to inform patients and families about the stages of their individual route, to update health care providers only partially involved or attending specialised treatment and care, like the patient's or family's primary physician, and finally to train novices in the field.


Assuntos
Procedimentos Clínicos , Doenças Raras , Exoma , Humanos , Doenças Raras/diagnóstico , Sequenciamento do Exoma
3.
J Mother Child ; 24(2): 65-72, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179604

RESUMO

BACKGROUND: Diagnosis, treatment, and care of inborn errors of metabolism require well organized interdisciplinary teams. Holistic approaches comprise the system of all elements and relations between elements necessary for an optimal function of the system. METHODS: Following the rule "structure follows function" based on scientific, academic, and clinical experience the elements of the system providing diagnosis, treatment, and care for inborn errors of metabolism are defined and described. RESULTS: A holistic approach to inborn errors of metabolism comprising 10 elements is suggested, established, and controlled by an interdisciplinary metabolic team organized as a disease, and a case management program based on evidence-based guidelines is suggested. Quality assurance and quality control will not only improve the treatment of the individual but also the health system. CONCLUSION: The holistic approach is a joint project of the team of health care professionals and the person with a condition, allowing them to see the patient's individual medical, behavioral, social, legal, and economic context. For practical, technical, and economic reasons this will only be possible in centers caring for a critical number of individuals.


Assuntos
Família/psicologia , Saúde Holística , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/psicologia , Erros Inatos do Metabolismo/terapia , Pacientes/psicologia , Estresse Psicológico/terapia , Adulto , Prestação Integrada de Cuidados de Saúde/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
4.
Mol Genet Metab ; 126(4): 397-405, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827756

RESUMO

BACKGROUND AND AIM: Patients with methylmalonic acidemia (MMA) and propionic acidemia (PA) and urea cycle disorders (UCD), treated with a protein restricted diet, are prone to growth failure. To obtain optimal growth and thereby efficacious protein incorporation, a diet containing the essential and functional amino acids for growth is necessary. Optimal growth will result in improved protein tolerance and possibly a decrease in the number of decompensations. It thus needs to be determined if amino acid deficiencies are associated with the growth retardation in these patient groups. We studied the correlations between plasma L-arginine levels, plasma branched chain amino acids (BCAA: L-isoleucine, L-leucine and L-valine) levels (amino acids known to influence growth), and height in MMA/PA and UCD patients. METHODS: We analyzed data from longitudinal visits made in stable metabolic periods by patients registered at the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD, Chafea no. 2010 12 01). RESULTS: In total, 263 MMA/PA and 311 UCD patients were included, all aged below 18 years of age. In patients with MMA and PA, height z-score was positively associated with patients' natural-protein-to-energy prescription ratio and their plasma L-valine and L-arginine levels, while negatively associated with the amount of synthetic protein prescription and their age at visit. In all UCDs combined, height z-score was positively associated with the natural-protein-to-energy prescription ratio. In those with carbamylphosphate synthetase 1 deficiency (CPS1-D), those with male ornithine transcarbamylase deficiency (OTC-D), and those in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome subgroup, height z-score was positively associated with patients' plasma L-leucine levels. In those with argininosuccinate synthetase deficiency (ASS-D) and argininosuccinate lyase deficiency (ASL-D), height was positively associated with patients' plasma L-valine levels. CONCLUSION: Plasma L-arginine and L-valine levels in MMA/PA patients and plasma L-leucine and L-valine levels in UCD patients, as well as the protein-to-energy prescription ratio in both groups were positively associated with height. Optimization of these plasma amino acid levels is essential to support normal growth and increase protein tolerance in these disorders. Consequently this could improve the protein-to-energy intake ratio.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Aminoácidos de Cadeia Ramificada/sangue , Arginina/sangue , Transtornos do Crescimento/etiologia , Acidemia Propiônica/complicações , Distúrbios Congênitos do Ciclo da Ureia/complicações , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Estatura , Criança , Pré-Escolar , Dieta , Europa (Continente) , Feminino , Transtornos do Crescimento/dietoterapia , Humanos , Estudos Longitudinais , Masculino , Sistema de Registros
5.
J Inherit Metab Dis ; 42(6): 1162-1175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30734935

RESUMO

Organic acidurias (OAD) and urea-cycle disorders (UCD) are rare inherited disorders affecting amino acid and protein metabolism. As dietary practice varies widely, we assessed their long-term prescribed dietary treatment against published guideline and studied plasma amino acids levels. We analyzed data from the first visit recorded in the European registry and network for intoxication type metabolic diseases (E-IMD, Chafea no. 2010 12 01). In total, 271 methylmalonic aciduria (MMA) and propionic aciduria (PA) and 361 UCD patients were included. Median natural protein prescription was consistent with the recommended daily allowance (RDA), plasma L-valine (57%), and L-isoleucine (55%) levels in MMA and PA lay below reference ranges. Plasma levels were particularly low in patients who received amino acid mixtures (AAMs-OAD) and L-isoleucine:L-leucine:L-valine (BCAA) ratio was 1.0:3.0:3.2. In UCD patients, plasma L-valine, L-isoleucine, and L-leucine levels lay below reference ranges in 18%, 30%, and 31%, respectively. In symptomatic UCD patients who received AAM-UCD, the median natural protein prescription lay below RDA, while their L-valine and L-isoleucine levels and plasma BCAA ratios were comparable to those in patients who did not receive AAM-UCD. Notably, in patients with ornithine transcarbamylase syndrome (OTC-D), carbamylphosphate synthetase 1 syndrome (CPS1-D) and hyperammonemia-hyperornithinemia-homocitrullinemia (HHH) syndrome selective L-citrulline supplementation resulted in higher plasma L-arginine levels than selective L-arginine supplementation. In conclusion, while MMA and PA patients who received AAMs-OAD had very low BCAA levels and disturbed plasma BCAA ratios, AAMs-UCD seemed to help UCD patients obtain normal BCAA levels. In patients with OTC-D, CPS1-D, and HHH syndrome, selective L-citrulline seemed preferable to selective L-arginine supplementation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Aminoácidos/administração & dosagem , Suplementos Nutricionais , Acidemia Propiônica/dietoterapia , Distúrbios Congênitos do Ciclo da Ureia/dietoterapia , Adolescente , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Europa (Continente)/epidemiologia , Estudos de Viabilidade , Feminino , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/epidemiologia , Lactente , Masculino , Ornitina/deficiência , Acidemia Propiônica/epidemiologia , Sistema de Registros , Estudos Retrospectivos , Resultado do Tratamento , Distúrbios Congênitos do Ciclo da Ureia/epidemiologia , Adulto Jovem
6.
Nutrients ; 10(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544518

RESUMO

Children with phenylketonuria (PKU) follow a protein restricted diet with negligible amounts of docosahexaenoic acid (DHA). Low DHA intakes might explain subtle neurological deficits in PKU. We studied whether a DHA supply modified plasma DHA and neurological and intellectual functioning in PKU. In a double-blind multicentric trial, 109 PKU patients were randomized to DHA doses from 0 to 7 mg/kg&day for six months. Before and after supplementation, we determined plasma fatty acid concentrations, latencies of visually evoked potentials, fine and gross motor behavior, and IQ. Fatty acid desaturase genotypes were also determined. DHA supplementation increased plasma glycerophospholipid DHA proportional to dose by 0.4% DHA per 1 mg intake/kg bodyweight. Functional outcomes were not associated with DHA status before and after intervention and remained unchanged by supplementation. Genotypes were associated with plasma arachidonic acid levels and, if considered together with the levels of the precursor alpha-linolenic acid, also with DHA. Functional outcomes and supplementation effects were not significantly associated with genotype. DHA intakes up to 7 mg/kg did not improve neurological functions in PKU children. Nervous tissues may be less prone to low DHA levels after infancy, or higher doses might be required to impact neurological functions. In situations of minimal dietary DHA, endogenous synthesis of DHA from alpha-linolenic acid could relevantly contribute to DHA status.


Assuntos
Cognição/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/uso terapêutico , Destreza Motora/efeitos dos fármacos , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/fisiopatologia , Adolescente , Criança , Ácidos Graxos Dessaturases/genética , Feminino , Humanos , Masculino , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/genética
7.
J Inherit Metab Dis ; 40(1): 75-101, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27853989

RESUMO

Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/tratamento farmacológico , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Suplementos Nutricionais , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lisina/metabolismo
8.
J Inherit Metab Dis ; 36(3): 525-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22971958

RESUMO

BACKGROUND: Metabolic treatment in glutaric aciduria type I (GA-I) including a low lysine diet with lysine-free, tryptophan-reduced amino acid supplements (AAS), carnitine supplementation and early start of emergency treatment during putatively threatening episodes of intermittent febrile illness dramatically improves the outcome and thus has been recommended by an international guideline group (Kölker et al, J Inherit Metab Dis 30:5-22, 2007). However, possible affection of linear growth, weight gain and biochemical follow-up monitoring has not been studied systematically. METHODS: Thirty-three patients (n = 29 asymptomatic, n = 4 dystonic) with GA-I who have been identified by newborn screening in Germany from 1999 to 2009 were followed prospectively during the first six years of life. Dietary treatment protocols, anthropometrical and biochemical parameters were longitudinally evaluated. RESULTS: Mean daily intake as percentage of guideline recommendations was excellent for lysine (asymptomatic patients: 101 %; dystonic patients: 103 %), lysine-free, tryptophan-reduced AAS (108 %; 104 %), energy (106 %; 110 %), and carnitine (92 %; 102 %). Low lysine diet did not affect weight gain (mean SDS 0.05) but mildly impaired linear growth in asymptomatic patients (mean SDS -0.38), while dystonic patients showed significantly reduced weight gain (mean SDS -1.32) and a tendency towards linear growth retardation (mean SDS -1.03). Patients treated in accordance with recent recommendations did not show relevant abnormalities of routine biochemical follow-up parameters. INTERPRETATION: Low lysine diet promotes sufficient intake of essential nutrients and anthropometric development in asymptomatic children up to age 6 year, whereas individualized nutritional concepts are required for dystonic patients. Revised recommendations for biochemical monitoring might be required for asymptomatic patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Pesos e Medidas Corporais , Encefalopatias Metabólicas/dietoterapia , Alimentos Formulados , Glutaril-CoA Desidrogenase/deficiência , Lisina/administração & dosagem , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Antropometria , Biomarcadores/análise , Biomarcadores/sangue , Encefalopatias Metabólicas/sangue , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/fisiopatologia , Carnitina/administração & dosagem , Criança , Pré-Escolar , Suplementos Nutricionais , Ingestão de Alimentos/fisiologia , Feminino , Seguimentos , Glutaril-CoA Desidrogenase/sangue , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Lactente , Masculino , Monitorização Fisiológica/métodos
9.
Mol Genet Metab ; 107(1-2): 72-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22520952

RESUMO

The cerebral formation and entrapment of neurotoxic dicarboxylic metabolites (glutaryl-CoA, glutaric and 3-hydroxyglutaric acid) are considered to be important pathomechanisms of striatal injury in glutaric aciduria type I (GA-I). The quantitatively most important precursor of these metabolites is lysine. Recommended therapeutic interventions aim to reduce lysine oxidation (low lysine diet, emergency treatment to minimize catabolism) and to enhance physiologic detoxification of glutaryl-CoA via formation of glutarylcarnitine (carnitine supplementation). It has been recently shown in Gcdh(-/-) mice that cerebral lysine influx and oxidation can be modulated by arginine which competes with lysine for transport at the blood-brain barrier and the inner mitochondrial membrane [Sauer et al., Brain 134 (2011) 157-170]. Furthermore, short-term outcome of 12 children receiving arginine-fortified diet showed very promising results [Strauss et al., Mol. Genet. Metab. 104 (2011) 93-106]. Since lysine-free, arginine-fortified amino acid supplements (AAS) are commercially available and used in Germany for more than a decade, we evaluated the effect of arginine supplementation in a cohort of 34 neonatally diagnosed GA-I patients (median age, 7.43 years; cumulative follow-up period, 221.6 patient years) who received metabolic treatment according to a published guideline [Kölker et al., J. Inherit. Metab. Dis. 30 (2007) 5-22]. Patients used one of two AAS product lines during the first year of life, resulting in differences in arginine consumption [group 1 (Milupa Metabolics): mean=111 mg arginine/kg; group 2 (Nutricia): mean=145 mg arginine/kg; p<0.001]. However, in both groups the daily arginine intake was increased (mean, 137 mg/kg body weight) and the dietary lysine-to-arginine ratio was decreased (mean, 0.7) compared to infants receiving human milk and other natural foods only. All other dietary parameters were in the same range. Despite significantly different arginine intake, the plasma lysine-to-arginine ratio did not differ in both groups. Frequency of dystonia was low (group 1: 12.5%; group 2: 8%) compared with patients not being treated according to the guideline, and gross motor development was similar in both groups. In conclusion, the development of complementary dietary strategies exploiting transport competition between lysine and arginine for treatment of GA-I seems promising. More work is required to understand neuroprotective mechanisms of arginine, to develop dietary recommendations for arginine and to evaluate the usefulness of plasma monitoring for lysine and arginine levels as predictors of cerebral lysine influx.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Encefalopatias Metabólicas/dietoterapia , Suplementos Nutricionais , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Arginina/sangue , Arginina/metabolismo , Encéfalo/metabolismo , Encefalopatias Metabólicas/diagnóstico , Criança , Pré-Escolar , Feminino , Glutaril-CoA Desidrogenase/deficiência , Humanos , Lactente , Lisina/sangue , Lisina/metabolismo , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA