Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105548

RESUMO

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Assuntos
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiologia , Fósforo/metabolismo , Oomicetos/fisiologia , Oomicetos/patogenicidade , Eucalyptus/microbiologia , Eucalyptus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Simbiose/fisiologia , Especificidade da Espécie , Meio Ambiente
2.
New Phytol ; 206(2): 507-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25494682

RESUMO

Hyperdiverse forests occur in the lowland tropics, whereas the most species-rich shrublands are found in regions such as south-western Australia (kwongan) and South Africa (fynbos). Despite large differences, these ecosystems share an important characteristic: their soils are strongly weathered and phosphorus (P) is a key growth-limiting nutrient. Soil-borne pathogens are increasingly being recognized as drivers of plant diversity in lowland tropical rainforests, but have received little attention in species-rich shrublands. We suggest a trade-off in which the species most proficient at acquiring P have ephemeral roots that are particularly susceptible to soil-borne pathogens. This could equalize out the differences in competitive ability among co-occurring species in these ecosystems, thus contributing to coexistence. Moreover, effective protection against soil-borne pathogens by ectomycorrhizal (ECM) fungi might explain the occurrence of monodominant stands of ECM trees and shrubs amongst otherwise species-rich communities. We identify gaps in our knowledge which need to be filled in order to evaluate a possible link between P limitation, fine root traits, soil-borne pathogens and local plant species diversity. Such a link may help to explain how numerous plant species can coexist in hyperdiverse rainforests and shrublands, and, conversely, how monodominant stands can develop in these ecosystems.


Assuntos
Micorrizas/fisiologia , Fósforo/deficiência , Plantas/metabolismo , Microbiologia do Solo , Biodiversidade , Ecossistema , Florestas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/microbiologia , África do Sul , Austrália do Sul , Árvores , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA