Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(12): 2671-2682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610031

RESUMO

Plant-based co-production of polyhydroxyalkanoates (PHAs) and seed oil has the potential to create a viable domestic source of feedstocks for renewable fuels and plastics. PHAs, a class of biodegradable polyesters, can replace conventional plastics in many applications while providing full degradation in all biologically active environments. Here we report the production of the PHA poly[(R)-3-hydroxybutyrate] (PHB) in the seed cytosol of the emerging bioenergy crop Camelina sativa engineered with a bacterial PHB biosynthetic pathway. Two approaches were used: cytosolic localization of all three enzymes of the PHB pathway in the seed, or localization of the first two enzymes of the pathway in the cytosol and anchoring of the third enzyme required for polymerization to the cytosolic face of the endoplasmic reticulum (ER). The ER-targeted approach was found to provide more stable polymer production with PHB levels up to 10.2% of the mature seed weight achieved in seeds with good viability. These results mark a significant step forward towards engineering lines for commercial use. Plant-based PHA production would enable a direct link between low-cost large-scale agricultural production of biodegradable polymers and seed oil with the global plastics and renewable fuels markets.


Assuntos
Brassicaceae , Poli-Hidroxialcanoatos , Biopolímeros , Poli-Hidroxialcanoatos/metabolismo , Poliésteres/metabolismo , Brassicaceae/metabolismo , Óleos de Plantas
2.
Plant Cell Rep ; 37(10): 1367-1381, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29881973

RESUMO

The rapid assessment of metabolic engineering strategies in plants is aided by crops that provide simple, high throughput transformation systems, a sequenced genome, and the ability to evaluate the resulting plants in field trials. Camelina sativa provides all of these attributes in a robust oilseed platform. The ability to perform field evaluation of Camelina is a useful, and in some studies essential benefit that allows researchers to evaluate how traits perform outside the strictly controlled conditions of a greenhouse. In the field the plants are subjected to higher light intensities, seasonal diurnal variations in temperature and light, competition for nutrients, and watering regimes dictated by natural weather patterns, all which may affect trait performance. There are difficulties associated with the use of Camelina. The current genetic resources available for Camelina pale in comparison to those developed for the model plant Arabidopsis thaliana; however, the sequence similarity of the Arabidopsis and Camelina genomes often allows the use of Arabidopsis as a reference when additional information is needed. Camelina's genome, an allohexaploid, is more complex than other model crops, but the diploid inheritance of its three subgenomes is straightforward. The need to navigate three copies of each gene in genome editing or mutagenesis experiments adds some complexity but also provides advantages for gene dosage experiments. The ability to quickly engineer Camelina with novel traits, advance generations, and bulk up homozygous lines for small-scale field tests in less than a year, in our opinion, far outweighs the complexities associated with the crop.


Assuntos
Brassicaceae/genética , Edição de Genes , Genoma de Planta/genética , Engenharia Metabólica , Óleos de Plantas/metabolismo , Arabidopsis/genética , Brassicaceae/química , Brassicaceae/metabolismo , Produtos Agrícolas , Melhoramento Vegetal , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Sementes/química , Sementes/genética , Sementes/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA