Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSphere ; 3(6)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463925

RESUMO

Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav (P < 0.05), and predicted metabolic capacity was significantly altered (P < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema (P > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.)IMPORTANCE The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Antibacterianos/administração & dosagem , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Metabolismo , Microbiota , Inibidores de beta-Lactamases/administração & dosagem , Adulto , Enema , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-28289030

RESUMO

The objective of this study was to assess the association between previous antibiotic use, particularly long-term prophylaxis, and the occurrence of subsequent resistant infections in children with index infections due to extended-spectrum-cephalosporin-resistant Enterobacteriaceae We also investigated the concordance of the index and subsequent isolates. Extended-spectrum-cephalosporin-resistant Escherichia coli and Klebsiella spp. isolated from normally sterile sites of patients aged <22 years were collected along with associated clinical data from four freestanding pediatric centers. Subsequent isolates were categorized as concordant if the species, resistance determinants, and fumC-fimH (E. coli) or tonB (Klebsiella pneumoniae) type were identical to those of the index isolate. In total, 323 patients had 396 resistant isolates; 45 (14%) patients had ≥1 subsequent resistant infection, totaling 73 subsequent resistant isolates. The median time between the index and first subsequent infections was 123 (interquartile range, 43 to 225) days. In multivariable Cox proportional hazards analyses, patients were 2.07 times as likely to have a subsequent resistant infection (95% confidence interval, 1.11 to 3.87) if they received prophylaxis in the 30 days prior to the index infection. In 26 (58%) patients, all subsequent isolates were concordant with their index isolate, and 7 (16%) additional patients had at least 1 concordant subsequent isolate. In 12 of 17 (71%) patients with E. coli sequence type 131 (ST131)-associated type 40-30, all subsequent isolates were concordant. Subsequent extended-spectrum-cephalosporin-resistant infections are relatively frequent and are most commonly due to bacterial strains concordant with the index isolate. Further study is needed to assess the role prophylaxis plays in these resistant infections.


Assuntos
Antibacterianos/uso terapêutico , Antibioticoprofilaxia/efeitos adversos , Infecções por Escherichia coli/prevenção & controle , Escherichia coli/efeitos dos fármacos , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/efeitos dos fármacos , Adesinas de Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Resistência às Cefalosporinas/genética , Cefalosporinas/uso terapêutico , Criança , Pré-Escolar , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas de Fímbrias/genética , Humanos , Lactente , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA