Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Biomaterials ; 280: 121311, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952382

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons leading to death within 3 years and without a curative treatment. Neurotrophic growth factors (NTFs) are pivotal for cell survival. A reason for the lack of patient efficacy with single recombinant NTF brain infusion is likely to be due to the synergistic neuroprotective action of multiple NTFs on a diverse set of signaling pathways. Fractionated (protein size <50, <30, <10, <3 kDa) heat-treated human platelet lysate (HHPL) preparations were adapted for use in brain tissue with the aim of demonstrating therapeutic value in ALS models and further elucidation of the mechanisms of action. In neuronal culture all fractions induced Akt-dependent neuroprotection as well as a strong anti-apoptotic and anti-ferroptotic action. In the <3 kDa fraction anti-ferroptotic properties were shown to be GPX4 dependent highlighting a role for other platelet elements associated with NTFs. In the SOD1G86R mouse model, lifespan was strongly increased by intracerebroventricular delivery of HHPL or by intranasal administration of <3 kDa fraction. Our results suggest that the platelet lysate biomaterials are neuroprotective in ALS. Further studies would now validate theragnostic biomarker on its antiferroptotic action, for further clinical development.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Materiais Biocompatíveis/uso terapêutico , Terapia Biológica , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/terapia , Neuroproteção , Superóxido Dismutase/metabolismo
3.
Brain ; 144(10): 3142-3158, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34086871

RESUMO

Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1-50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.


Assuntos
Terapia Biológica/métodos , Plaquetas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Administração Intranasal , Animais , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Transfus Apher Sci ; 59(1): 102717, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31902683

RESUMO

Thrombotic microangiopathies (TMA) are characterized by microangiopathic hemolytic anemia, thrombocytopenia and organ damage resulting from mechanical factors, accumulation of the ultra-large von Willebrand factor multimers or complement-mediated abnormalities. Severe acquired vitamin B12 (Cobalamin - Cbl) deficiency or congenital defective Cbl metabolism could lead to a picture that mimics TMA. The later has been termed metabolism-mediated TMA (MM- TMA). This confusing picture is mediated partly by the large red cell fragmentation coupled with reduced platelet production in the absence of vitamin B12 and partly by the accumulated byproducts and metabolites that induce endothelial injury and hence organ damage. Expensive and complicated treatment for TMA is often initiated on an empiric basis, pending the results of confirmatory tests. In contrast, vitamin B12 Pseudo-TMA and MM-TMA could be treated with proper vitamin B12 supplementation. It is therefore important to identify these disorders promptly. The recent availability of a validated scoring system such as the PLASMIC score uses simple clinical and laboratory parameters. As it incorporates the mean corpuscular volume in its laboratory parameters, this helps in the identification of pseudo and MM-TMA. Perhaps some minor modification of this scoring system by changing the parameters of hemolysis to include reticulocytosis and rather than and/or other hemolytic parameters could even help refine this identification.


Assuntos
Microangiopatias Trombóticas/sangue , Deficiência de Vitamina B 12/complicações , Humanos , Microangiopatias Trombóticas/etiologia , Microangiopatias Trombóticas/patologia
5.
Acta Biomater ; 96: 468-479, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260820

RESUMO

Fibrinolytic treatments for venous or arterial thrombotic syndromes using systemic administration of thrombolytics, such as streptokinase, can induce life-threatening bleeding complications. In this study, we offer the first proof of concept for a targeted photothermal fibrin clot prevention and reduction technology using macrophages loaded with polypyrrole-polyethylenimine nanocomplexes (Ppy-PEI NCs) and subjected to near-infrared radiation (NIR). We first show that the developed Ppy-PEI NCs could be taken up by defensive macrophages in vitro through endocytosis. The Ppy-PEI NCs generated local hyperthermia upon NIR treatment, which appeared to produce reactive oxygen species in Ppy-PEI NC-loaded macrophages. Preliminary evidence of efficacy as an antithrombotic tool is provided, in vitro, using fibrinogen-converted fibrin clots, and in vivo, in a rat femoral vascular thrombosis model generated by exposure to ferric chloride substance. The in vivo biocompatibility, photothermal behavior, biodistribution, and histological observation of cellular interactions with the Ppy-PEI NCs in the rat model provide rationale in support of further preclinical studies. This Ppy-PEI NC/NIR-based method, which uses a unique macrophage-guided targeting approach to prevent and lyse fibrin clots, may potentially overcome some of the disadvantages of current thrombolytic treatments. STATEMENT OF SIGNIFICANCE: Fibrinolytic treatments for venous or arterial thrombotic syndromes using systemic administration of thrombolytics, such as streptokinase, can induce life-threatening bleeding complications. In this study, we offer the first proof of concept for a targeted photothermal fibrin clot reduction technology using macrophages loaded with polypyrrole-polyethylenimine nanocomplexes (Ppy-PEI NCs) and subjected to near-infrared radiation (NIR). We first show that the developed Ppy-PEI NCs can be taken up by defensive macrophages in vitro through endocytosis. The Ppy-PEI NCs generated local hyperthermia upon NIR treatment, which appeared to produce reactive oxygen species in Ppy-PEI NC-loaded macrophages. Preliminary evidence of efficacy as an antithrombotic tool is provided, in vitro, using fibrinogen-converted fibrin clots, and in vivo, in a rat femoral vascular thrombosis model generated by exposure to ferric chloride substance. The in vivo biocompatibility, photothermal behavior, biodistribution, and histological observation of cellular interactions with the Ppy-PEI NCs in the rat model provide rationale in support of further preclinical studies. This Ppy-PEI NC/NIR-based method, which uses a unique macrophage-guided targeting approach to disintegrate fibrin clots, may potentially overcome some of the disadvantages of current thrombolytic treatments.


Assuntos
Materiais Biomiméticos/química , Fibrina/metabolismo , Hipertermia Induzida , Macrófagos/citologia , Nanopartículas/química , Polietilenoimina/farmacologia , Polímeros/farmacologia , Pirróis/farmacologia , Trombose/prevenção & controle , Animais , Endocitose , Humanos , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/ultraestrutura , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Distribuição Tecidual
6.
N Biotechnol ; 49: 151-160, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30465908

RESUMO

There is accumulating experimental evidence that human platelet lysate (HPL) made from platelet concentrates can replace fetal bovine serum (FBS) as a xeno-free clinical-grade supplement of growth media to expand mesenchymal stromal cells (MSCs). However, uncertainties exist in regard to impacts that various manufacturing methods of HPL can exert on the expansion and differentiation capacity of MSCs. In particular, there is a need to evaluate the possibility of implementing virus-inactivation treatment during HPL production to ensure optimal safety of industrial HPL pools. Expired human platelet concentrates from four different donors were pooled and subjected to freeze-thaw cycles (-80/+37 °C), followed or not by serum-conversion by calcium chloride, heat-treatment at 56 °C for 30 min, or solvent-detergent (S/D) virus inactivation. The concentrations of total proteins, growth factors and fibrinogen, and the chemical compositions of the HPLs were characterized. The impact of HPL supplementation on the cell morphology, doubling time, immunophenotype and trilineage differentiation capacity of Wharton jelly MSCs (WJMSCs) were compared over five passages, using FBS as a control and normalizing the protein content. Data showed that WJMSCs expanded equally well, exhibited a typical fibroblast morphology, had short doubling times, maintained their immunophenotypes, and differentiated into chondrocyte, osteocyte, and adipocyte lineages in all HPL-supplemented media, all of which were more effective than FBS. In conclusion, we found minimal detectable impact of the HPL manufacturing process, including S/D virus inactivation, on the suitability of expanding WJMSCs in vitro.


Assuntos
Plaquetas/metabolismo , Detergentes/farmacologia , Células-Tronco Mesenquimais/citologia , Solventes/farmacologia , Geleia de Wharton/citologia , Fibrinogênio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos
7.
J Pineal Res ; 64(3)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29274168

RESUMO

Periodontitis (PD) is an inflammatory disease characterized by gingival inflammation and resorption of alveolar bone. Impaired receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) signaling caused by enhanced production of pro-inflammatory cytokines plays an essential role in the pathogenesis of PD. Considering melatonin possesses significant anti-inflammatory property, this study aimed to determine whether prophylactic treatment with melatonin would effectively normalize RANKL/OPG signaling, depress toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88)-mediated pro-inflammatory cytokine activation, and successfully suppress the pathogenesis of PD. PD was induced in adult rats by placing the ligature at molar subgingival regions. Fourteen days before PD induction, 10, 50, or 100 mg/kg of melatonin was intraperitoneally injected for consecutive 28 days. Biochemical and enzyme-linked immunosorbent assay were used to detect TLR4/MyD88 activity, RANKL, OPG, interleukin 1ß, interleukin 6, and tumor necrosis factor-α levels, respectively. The extent of bone loss, bone mineral intensity, and calcium intensity was further evaluated by scanning electron microscopy, micro-computed tomography, and energy-dispersive X-ray spectroscopy. Results indicated that high RANKL/OPG ratio, TLR4/MyD88 activity, and pro-inflammatory cytokine levels were detected following PD. Impaired biochemical findings paralleled well with severe bone loss and reduced calcium intensity. However, in rats pretreated with melatonin, all above parameters were successfully returned to nearly normal levels with maximal change observed in rats receiving 100 mg/kg. As prophylactic treatment with melatonin effectively normalizes RANKL/OPG signaling by depressing TLR4/MyD88-mediated pro-inflammatory cytokine production, dietary supplement with melatonin may serve as an advanced strategy to strengthen oral health to counteract PD-induced destructive damage.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Periodontite/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Osteoprotegerina/efeitos dos fármacos , Osteoprotegerina/metabolismo , Periodontite/prevenção & controle , Profilaxia Pré-Exposição/métodos , Ligante RANK/efeitos dos fármacos , Ligante RANK/metabolismo , Ratos , Ratos Wistar , Receptor 4 Toll-Like
8.
Transfus Apher Sci ; 56(5): 769-773, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28939367

RESUMO

BACKGROUND: Human platelet lysates (HPLs) are emerging as the new gold standard supplement of growth media for ex vivo expansion of cells for transplant. However, variations do exist in the way how HPLs are prepared. In particular, uncertainties still exist regarding the type of HPL most suitable for corneal endothelium cells (CEC) expansion, especially as these cells have limited proliferative capacity. MATERIAL AND METHODS: Three distinct HPL preparations were produced, with or without calcium chloride/glass beads activation, and with or without heat treatment at 56°C for 30min. These HPLs were used to supplement basal D-MEM growth medium, each at a protein concentration equivalent to that of 10% fetal bovine serum (FBS; control). Impact on CEC (BCE C/D-1b cells) in vitro morphology, viability and capacity to express Zonula occludens-1 (ZO-1) tight junction marker was assessed by Western blotting. RESULTS: BCE C/D-1b cells grown in all HPL supplements exhibited four of essential characteristic properties: adhesion capacity, microscopic morphology and viability similar to that observed when using 10% FBS. In addition, Western blots analysis revealed an expression of the ZO-1 marker by BCE C/D-1b cells in all conditions of culture. CONCLUSION: CECs can expand ex vivo in a basal medium supplemented with the three HPLs without noticeable difference compared to FBS supplement. These data support further studies to evaluate the potential to use HPLs as a clinical-grade xeno-free supplement of CEC for corneal transplant.


Assuntos
Plaquetas/metabolismo , Endotélio Corneano/fisiopatologia , Animais , Bovinos , Diferenciação Celular , Humanos
9.
Adv Healthc Mater ; 6(14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28722819

RESUMO

Cancer cells exhibit specific physiological differences compared to normal cells. Most surface membranes of cancer cells are characterized by high expression of given protein receptors, such as albumin, transferrin, and growth factors that are also present in the plasma of patients themselves, but are lacking on the surface of normal cells. These distinct features between cancer and normal cells can serve as a niche for developing specific treatment strategies. Near-infrared (NIR)-light-triggered therapy platforms are an interesting novel avenue for use in clinical nanomedicine. As a photothermal agent, conducting polymer nanoparticles, such as polypyrrole (PPy), of great NIR light photothermal effects and good biocompatibility, show promising applications in cancer treatments through the hyperthermia mechanism. Autologous plasma proteins coated PPy nanoparticles for hyperthermia therapy as a novel core technology platform to treat cancers through secreted protein acid and rich in cysteine targeting are developed here. This approach can provide unique features of specific targeting toward cancer cell surface markers and immune transparency to avoid recognition and attack by defense cells and achieve prolonged circulation half-life. This technology platform unveils new clinical options for treatment of cancer patients, supporting the emergence of innovative clinical products.


Assuntos
Proteínas Sanguíneas , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Nanoestruturas , Neoplasias Experimentais/terapia , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/farmacologia , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Antiviral Res ; 130: 58-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012176

RESUMO

Without a vaccine, hepatitis C virus (HCV) remains a global medical and socio-economic burden, predisposing about 170 million carriers worldwide to end-stage liver diseases including cirrhosis and hepatocellular carcinoma. Although the recently developed direct-acting antivirals (DAAs) have revolutionized hepatitis C treatment, most of them are unsuitable for monotherapy due to risks of resistance, thus necessitating combination with interferon (IFN)-alpha, ribavirin, or additional DAAs. More importantly, the high cost associated with the DAAs restricts their accessibility to most parts of the world. Developing novel cost-effective anti-HCV therapeutics may help expand the scope of antivirals and treatment strategies against hepatitis C. Herein, we applied an activity-based and fraction-guided analysis of extracts from the medicinal plant Phyllanthus urinaria (P. urinaria), which yielded fraction 13 (F13) as possessing the most potent inhibitory activity against early viral entry of cell-culture HCV infection. Chemical analysis (silica gel chromatography followed by ESI LC-MS plus (1)H and (13)C NMR) of F13 identified loliolide (LOD), a monoterpenoid lactone, as a novel inhibitor of HCV entry. Specifically, LOD could efficiently inactivate HCV free virus particles, abrogate viral attachment, and impede viral entry/fusion, with minimal effect on viral replication/translation, particle production, and induction of type I IFN host antiviral immune response. ELISA-based binding analysis confirmed the monoterpenoid's ability in efficiently blocking HCV particle attachment to the host cell surface. Furthermore, LOD could inhibit infection by several genotypic strains of HCV. This is the first report characterizing P. urinaria and its bioactive compound LOD as potent HCV entry inhibitors, which merit further evaluation for development as candidate antiviral agents against hepatitis C.


Assuntos
Antivirais/farmacologia , Benzofuranos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular , Células Cultivadas , Fracionamento Químico , Relação Dose-Resposta a Droga , Genótipo , Humanos , Concentração Inibidora 50 , Extratos Vegetais/química , Montagem de Vírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
11.
PLoS One ; 9(6): e99145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945500

RESUMO

Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml) and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml) neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices and regulatory recommendations to limit the use of xenogenic materials.


Assuntos
Cegueira/terapia , Técnicas de Cultura de Células , Transplante de Córnea , Meios de Cultura , Endotélio Corneano/citologia , Animais , Cegueira/patologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Córnea/citologia , Córnea/crescimento & desenvolvimento , Endotélio Corneano/transplante , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA