Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microb Cell Fact ; 23(1): 29, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245756

RESUMO

BACKGROUND: Industrial by-products accrue in most agricultural or food-related production processes, but additional value chains have already been established for many of them. Crude glycerol has a 60% lower market value than commercial glucose, as large quantities are produced in the biodiesel industry, but its valorisation is still underutilized. Due to its high carbon content and the natural ability of many microorganisms to metabolise it, microbial upcycling is a suitable option for this waste product. RESULTS: In this work, the use of crude glycerol for the production of the value-added compound itaconate is demonstrated using the smut fungus Ustilago maydis. Starting with a highly engineered strain, itaconate production from an industrial glycerol waste stream was quickly established on a small scale, and the resulting yields were already competitive with processes using commercial sugars. Adaptive laboratory evolution resulted in an evolved strain with a 72% increased growth rate on glycerol. In the subsequent development and optimisation of a fed-batch process on a 1.5-2 L scale, the use of molasses, a side stream of sugar beet processing, eliminated the need for other expensive media components such as nitrogen or vitamins for biomass growth. The optimised process was scaled up to 150 L, achieving an overall titre of 72 g L- 1, a yield of 0.34 g g- 1, and a productivity of 0.54 g L- 1 h- 1. CONCLUSIONS: Pilot-scale itaconate production from the complementary waste streams molasses and glycerol has been successfully established. In addition to achieving competitive performance indicators, the proposed dual feedstock strategy offers lower process costs and carbon footprint for the production of bio-based itaconate.


Assuntos
Glicerol , Succinatos , Glicerol/metabolismo , Succinatos/metabolismo , Glucose/metabolismo
2.
Appl Environ Microbiol ; 88(6): e0251021, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108081

RESUMO

Endophytic fungi have been recognized as prolific producers of chemically diverse secondary metabolites. In this work, we describe a new representative of the order Helotiales isolated from the medicinal plant Bergenia pacumbis. Several bioactive secondary metabolites were produced by this Helotiales sp. BL 73 isolate grown on rice medium, including cochlioquinones and isofusidienols. Sequencing and analysis of the approximately 59-Mb genome revealed at least 77 secondary metabolite biosynthesis gene clusters, of which several could be associated with detected compounds or linked to previously reported molecules. Four terpene synthase genes identified in the BL73 genome were codon optimized and expressed, together with farnesyl-, geranyl-, and geranylgeranyl-pyrophosphate synthases, in Streptomyces spp. An analysis of recombinant strains revealed the production of linalool and its oxidized form, terpenoids typically associated with plants, as well as a yet unidentified terpenoid. This study demonstrates the importance of a complex approach to the investigation of the biosynthetic potential of endophytic fungi using both conventional methods and genome mining. IMPORTANCE Endophytic fungi represent an as yet underexplored source of secondary metabolites, of which some may have industrial and medical applications. We isolated a slow-growing fungus belonging to the order Helotiales from the traditional medicinal plant Bergenia pacumbis and characterized its potential to biosynthesize secondary metabolites. We used cultivation of the isolate with a subsequent analysis of compounds produced, bioinformatics-based mining of the genome, and heterologous expression of several terpene synthase genes. Our study revealed that this Helotiales isolate has enormous potential to produce structurally diverse natural products, including polyketides, nonribosomally synthesized peptides, terpenoids, and ribosomally synthesized and posttranslationally modified peptides (RiPPs). Identification of meroterpenoids and xanthones, along with establishing a link between these molecules and their putative biosynthetic genes, sets the stage for investigation of the respective biosynthetic pathways. The heterologous production of terpenoids suggests that this approach can be used for the discovery of new compounds belonging to this chemical class using Streptomyces bacteria as hosts.


Assuntos
Ascomicetos , Streptomyces , Ascomicetos/genética , Vias Biossintéticas/genética , Família Multigênica , Metabolismo Secundário , Streptomyces/genética
3.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748496

RESUMO

An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757  330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.


Assuntos
Biocombustíveis , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Clostridium/genética
4.
Front Microbiol ; 12: 664598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995329

RESUMO

The methylotrophic thermophile Bacillus methanolicus can utilize the non-food substrate methanol as its sole carbon and energy source. Metabolism of L-lysine, in particular its biosynthesis, has been studied to some detail, and methanol-based L-lysine production has been achieved. However, little is known about L-lysine degradation, which may proceed via 5-aminovalerate (5AVA), a non-proteinogenic ω-amino acid with applications in bioplastics. The physiological role of 5AVA and related compounds in the native methylotroph was unknown. Here, we showed that B. methanolicus exhibits low tolerance to 5AVA, but not to related short-chain (C4-C6) amino acids, diamines, and dicarboxylic acids. In order to gain insight into the physiological response of B. methanolicus to 5AVA, transcriptomic analyses by differential RNA-Seq in the presence and absence of 5AVA were performed. Besides genes of the general stress response, RNA levels of genes of histidine biosynthesis, and iron acquisition were increased in the presence of 5AVA, while an Rrf2 family transcriptional regulator gene showed reduced RNA levels. In order to test if mutations can overcome growth inhibition by 5AVA, adaptive laboratory evolution (ALE) was performed and two mutants-AVA6 and AVA10-with higher tolerance to 5AVA were selected. Genome sequencing revealed mutations in genes related to iron homeostasis, including the gene for an iron siderophore-binding protein. Overexpression of this mutant gene in the wild-type (WT) strain MGA3 improved 5AVA tolerance significantly at high Fe2+ supplementation. The combined ALE, omics, and genetics approach helped elucidate the physiological response of thermophilic B. methanolicus to 5AVA and will guide future strain development for 5AVA production from methanol.

5.
ACS Chem Biol ; 16(5): 915-928, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33913701

RESUMO

Glycopeptide antibiotics (GPAs) are last defense line drugs against multidrug-resistant Gram-positive pathogens. Natural GPAs teicoplanin and vancomycin, as well as semisynthetic oritavancin, telavancin, and dalbavancin, are currently approved for clinical use. Although these antibiotics remain efficient, emergence of novel GPA-resistant pathogens is a question of time. Therefore, it is important to investigate the natural variety of GPAs coming from so-called "rare" actinobacteria. Herein we describe a novel GPA producer-Nonomuraea coxensis DSM 45129. Its de novo sequenced and completely assembled genome harbors a biosynthetic gene cluster (BGC) similar to the dbv BGC of A40926, the natural precursor to dalbavancin. The strain produces a novel GPA, which we propose is an A40926 analogue lacking the carboxyl group on the N-acylglucosamine moiety. This structural difference correlates with the absence of dbv29-coding for an enzyme responsible for the oxidation of the N-acylglucosamine moiety. Introduction of dbv29 into N. coxensis led to A40926 production in this strain. Finally, we successfully applied dbv3 and dbv4 heterologous transcriptional regulators to trigger and improve A50926 production in N. coxensis, making them prospective tools for screening other Nonomuraea spp. for GPA production. Our work highlights genus Nonomuraea as a still untapped source of novel GPAs.


Assuntos
Actinobacteria/química , Antibacterianos/química , Proteínas de Bactérias/química , Glicopeptídeos/química , Proteínas Recombinantes/química , Actinobacteria/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Sequência de Bases , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Glucosamina/química , Glicopeptídeos/farmacologia , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Espectrometria de Massas em Tandem , Teicoplanina/análogos & derivados , Teicoplanina/química , Teicoplanina/farmacologia
6.
J Nat Prod ; 83(8): 2381-2389, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32786880

RESUMO

Extracts from Streptomyces sp. S4.7 isolated from the rhizosphere of edelweiss, an alpine medicinal plant, exhibited activity against Gram-positive bacteria. LC-HRMS analyses of the extracts resulted in the detection of two unknown, structurally related lipopeptides that were assumed to be responsible for the antibiotic activity. LC-MS guided isolation and structure elucidation of viennamycins A and B (1 and 2) by HR-MS/MS, 1D and 2D NMR, and Marfey's analyses revealed them to be novel compounds, with viennamycin A containing cysteic acid, a unique feature for lipopeptides. Tests for antibacterial, antifungal, and cytotoxic activities of purified viennamycins, both with and without divalent cations, did not reveal any bioactivity, suggesting that their biological function, which could not be determined in the tests used, is atypical for lipopeptides. The genome of Streptomyces sp. S4.7 was sequenced and analyzed, revealing the viennamycin biosynthetic gene cluster. Detailed bioinformatics-based analysis of the viennamycin gene cluster allowed elucidation of the biosynthetic pathway for these lipopeptides.


Assuntos
Lipopeptídeos/biossíntese , Streptomyces/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Análise Espectral/métodos
7.
Free Radic Biol Med ; 139: 55-69, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121222

RESUMO

The prevalence of methicillin-resitant Staphylococcus aureus (MRSA) in hospitals and the community poses an increasing health burden, which requires the discovery of alternative antimicrobials. Allicin (diallyl thiosulfinate) from garlic exhibits broad-spectrum antimicrobial activity against many multidrug resistant bacteria. The thiol-reactive mode of action of allicin involves its S-thioallylations of low molecular weight (LMW) thiols and protein thiols. To investigate the mode of action and stress response caused by allicin in S. aureus, we analyzed the transcriptome signature, the targets for S-thioallylation in the proteome and the changes in the bacillithiol (BSH) redox potential (EBSH) under allicin stress. Allicin caused a strong thiol-specific oxidative and sulfur stress response and protein damage as revealed by the induction of the PerR, HypR, QsrR, MhqR, CstR, CtsR, HrcA and CymR regulons in the RNA-seq transcriptome. Allicin also interfered with metal and cell wall homeostasis and caused induction of the Zur, CsoR and GraRS regulons. Brx-roGFP2 biosensor measurements revealed a strongly increased EBSH under allicin stress. In the proteome, 57 proteins were identified with S-thioallylations under allicin treatment, including translation factors (EF-Tu, EF-Ts), metabolic and redox enzymes (AldA, GuaB, Tpx, KatA, BrxA, MsrB) as well as redox-sensitive MarR/SarA-family regulators (MgrA, SarA, SarH1, SarS). Phenotype and biochemical analyses revealed that BSH and the HypR-controlled disulfide reductase MerA are involved in allicin detoxification in S. aureus. The reversal of protein S-thioallylation was catalyzed by the Brx/BSH/YpdA pathway. Finally, the BSSB reductase YpdA was shown to use S-allylmercaptobacillithiol (BSSA) as substrate to regenerate BSH in S. aureus. In conclusion, allicin results in an oxidative shift of EBSH and protein S-thioallylation, which can be reversed by YpdA and the Brx/BSH/YpdA electron pathways in S. aureus to regenerate thiol homeostasis.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cisteína/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Glucosamina/análogos & derivados , NADH NADPH Oxirredutases/genética , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Cisteína/metabolismo , Dissulfetos , Transporte de Elétrons , Alho/química , Glucosamina/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fatores de Iniciação em Procariotos/genética , Fatores de Iniciação em Procariotos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulon , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácidos Sulfínicos/isolamento & purificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA