Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(12): 2627-2637, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34789070

RESUMO

Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES: This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS: GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS: Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION: We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.


Assuntos
Proantocianidinas , Ratos , Animais , Proantocianidinas/farmacologia , Antioxidantes/farmacologia , Ratos Wistar , Dieta , Polifenóis/farmacologia , Hipocampo , Mitocôndrias
2.
Expert Opin Drug Discov ; 15(9): 993-1004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450711

RESUMO

INTRODUCTION: Opicapone (OPC) is a well-established catechol-O-methyltransferase (COMT) inhibitor that is approved for the treatment of Parkinson's disease (PD) associated with L-DOPA/L-amino acid decarboxylase inhibitor (DDI) therapy allowing for prolonged activity due to a more continuous supply of L-DOPA in the brain. Thus, OPC decreases fluctuation in L-DOPA plasma levels and favors more constant central dopaminergic receptor stimulation, thus improving PD symptomatology. AREAS COVERED: This review evaluates the preclinical development, pharmacology, pharmacokinetics and safety profile of OPC. Data was extracted from published preclinical and clinical studies published on PUBMED and SCOPUS (Search period: 2000-2019). Clinical and post-marketing data are also evaluated. EXPERT OPINION: OPC is a third generation COMT inhibitor with a novel structure. It has an efficacy and tolerability superior to its predecessors, tolcapone (TOL) and entacapone (ENT). It also provides a safe and simplified drug regimen that allows neurologists to individually adjust the existing daily administration of L-DOPA. OPC is indicated as an adjunctive therapy to L-DOPA/DDI in patients with PD and end-of-dose motor fluctuations who cannot be stabilized on those combinations.


Assuntos
Inibidores de Catecol O-Metiltransferase/administração & dosagem , Oxidiazóis/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacologia , Inibidores de Catecol O-Metiltransferase/efeitos adversos , Inibidores de Catecol O-Metiltransferase/farmacologia , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Levodopa/metabolismo , Oxidiazóis/efeitos adversos , Oxidiazóis/farmacologia , Doença de Parkinson/fisiopatologia
3.
Biomed Pharmacother ; 113: 108661, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30836275

RESUMO

Alzheimer's disease (AD) represents a global burden in the economics of healthcare systems. Amyloid-ß (Aß) peptides are formed by amyloid-ß precursor protein (AßPP) cleavage, which can be processed by two pathways. The cleavage by the α-secretase A Disintegrin And Metalloprotease 10 (ADAM10) releases the soluble portion (sAßPPα) and prevents senile plaques. This pathway remains largely unknown and ignored, mainly regarding pharmacological approaches that may act via different signaling cascades and thus stimulate non-amyloidogenic cleavage through ADAM10. This review emphasizes the effects of natural compounds on ADAM10 modulation, which eventuates in a neuroprotective mechanism. Moreover, ADAM10 as an AD biomarker is revised. New treatments and preventive interventions targeting ADAM10 regulation for AD are necessary, considering the wide variety of ADAM10 substrates.


Assuntos
Proteína ADAM10/metabolismo , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/metabolismo , Catequina/análogos & derivados , Proteínas de Membrana/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biomarcadores/metabolismo , Catequina/farmacologia , Ginkgo biloba , Humanos
4.
J Alzheimers Dis ; 66(3): 1175-1191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30400089

RESUMO

The most common type of dementia is Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by impairment in cognitive performance in aged individuals. Currently, there is no effective pharmacological treatment that cures the disease due to the lack of knowledge on the actual mechanisms involved in its pathogenesis. In the last decades, the amyloidogenic hypothesis has been the most studied theory trying to explain the origin of AD, yet it does not address all the concerns relating to its development. In the present study, a possible new preclinical treatment of AD was evaluated using the ethyl acetate extract (EAE) of leaves of Ugni molinae Turcz. (synonym Myrtus ugni Molina Family Myrtacea). The effects were assessed on female transgenic mice from a preclinical model of familial AD (APPswe/PS1dE9) combined with a high fat diet. This preclinical model was selected due to the already available experimental and observational data proving the relationship between obesity, gender, metabolic stress, and cognitive dysfunction; related to characteristics of sporadic AD. According to chemical analyses, EAE would contain polyphenols such as tannins, flavonoid derivatives, and phenolic acids, as well as pentacyclic triterpenoids that exhibit neuroprotective, anti-inflammatory, and antioxidant effects. In addition, the treatment evidenced its capacity to prevent deterioration of memory capacity and reduction of progression speed of AD neuropathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Memória/efeitos dos fármacos , Myrtus , Extratos Vegetais/uso terapêutico , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Extratos Vegetais/farmacologia , Folhas de Planta , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA