Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(10): e0048023, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37695298

RESUMO

A double ampC (AmpCG183D) and ampD (AmpDH157Y) genes mutations have been identified by whole genome sequencing in a Pseudomonas aeruginosa (PaS) that became resistant (PaR) in a patient treated by ceftolozane/tazobactam (C/T). To precisely characterize the respective contributions of these mutations on the decreased susceptibility to C/T and on the parallel increased susceptibility to imipenem (IMI), mutants were generated by homologous recombination in PAO1 reference strain (PAO1- AmpCG183D, PAO1-AmpDH157Y, PAO1-AmpCG183D/AmpDH157Y) and in PaR (PaR-AmpCPaS/AmpDPaS). Sequential time-kill curve experiments were conducted on all strains and analyzed by semi-mechanistic PKPD modeling. A PKPD model with adaptation successfully described the data, allowing discrimination between initial and time-related (adaptive resistance) effects of mutations. With PAO1 and mutant-derived strains, initial EC50 values increased by 1.4, 4.1, and 29-fold after AmpCG183D , AmpDH157Y and AmpCG183D/AmpDH157Y mutations, respectively. EC50 values were increased by 320, 12.4, and 55-fold at the end of the 2 nd experiment. EC50 of PAO1-AmpCG183D/AmpDH157Y was higher than that of single mutants at any time of the experiments. Within the PaR clinical background, reversal of AmpCG183D, and AmpDH157Y mutations led to an important decrease of EC50 value, from 80.5 mg/L to 6.77 mg/L for PaR and PaR-AmpCPaS/AmpDPaS, respectively. The effect of mutations on IMI susceptibility mainly showed that the AmpCG183D mutation prevented the emergence of adaptive resistance. The model successfully described the separate and combined effect of AmpCG183D and AmpDH157Y mutations against C/T and IMI, allowing discrimination and quantification of the initial and time-related effects of mutations. This method could be reproduced in clinical strains to decipher complex resistance mechanisms.


Assuntos
Farmacorresistência Bacteriana , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/farmacologia , Cefalosporinas/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Tazobactam/farmacologia , Farmacorresistência Bacteriana/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-31061149

RESUMO

Mycobacterium abscessus is responsible for difficult-to-treat chronic pulmonary infections in humans. Current regimens, including parenteral administrations of cefoxitin (FOX) in combination with amikacin and clarithromycin, raise compliance problems and are frequently associated with high failure and development of resistance. Aerosol delivery of FOX could be an interesting alternative. FOX was administered to healthy rats by intravenous bolus or intratracheal nebulization, and concentrations were determined in plasma and epithelial lining fluid (ELF) by liquid chromatography-tandem mass spectrometry. After intrapulmonary administration, the FOX area under the curve within ELF was 1,147 times higher than that in plasma, indicating that this route of administration offers a biopharmaceutical advantage over intravenous administration. FOX antimicrobial activity was investigated using time-kill curves combined with a pharmacokinetic/pharmacodynamic (PK/PD) type modeling approach in order to account for its in vitro instability that precludes precise determination of MIC. Time-kill data were adequately described by a model including in vitro degradation, a sensitive (S) and a resistant (R) bacteria subpopulation, logistic growth, and a maximal inhibition-type growth inhibition effect of FOX. Median inhibitory concentrations were estimated at 16.2 and 252 mg/liter for the S and R subpopulations, respectively. These findings suggest that parenteral FOX dosing regimens used in patients for the treatment of M. abscessus are not sufficient to reduce the bacterial burden and that FOX nebulization offers a potential advantage that needs to be further investigated.


Assuntos
Antibacterianos/farmacologia , Cefoxitina/farmacocinética , Cefoxitina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Administração Intravenosa/métodos , Animais , Antibacterianos/farmacocinética , Claritromicina/farmacocinética , Claritromicina/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana/métodos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Ratos , Ratos Sprague-Dawley , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia
3.
Antimicrob Agents Chemother ; 59(8): 4750-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014952

RESUMO

The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species.


Assuntos
Guanidinas/uso terapêutico , Monócitos/microbiologia , Inibidores da Síntese de Proteínas/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pirimidinonas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , Células Cultivadas , Ciprofloxacina/uso terapêutico , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fluoroquinolonas/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana/métodos , Moxifloxacina , Vancomicina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA