Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072350

RESUMO

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Aspergillus flavus/efeitos dos fármacos , Mimosa , Extratos Vegetais/farmacologia , Taninos/farmacologia , Aflatoxina B1/biossíntese , Aflatoxina B1/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Cromatografia Líquida de Alta Pressão , Mimosa/química , Estresse Oxidativo/efeitos dos fármacos
2.
Toxins (Basel) ; 9(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257049

RESUMO

Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca-known as hyssop-completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination.


Assuntos
Aflatoxina B1/biossíntese , Aspergillus flavus/efeitos dos fármacos , Lamiaceae , Extratos Vegetais/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA