Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Animals (Basel) ; 13(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835631

RESUMO

Heat stress can cause intestinal inflammation, impaired barrier integrity, and decreased immunity in poultry. While zinc is known to mitigate the adverse effects of heat stress, how the dietary supplementation of different sources and levels of it can improve the heat stress capacity of Chinese landraces remains unclear. This study investigated Xueshan chickens, which are an important local breed in China. The effects of different levels of ZnS and Zn-Prot M on their intestinal immune function under heat stress were compared. We found that different levels of ZnS and Zn-Prot M could effectively reduce the secretion level of IL-6 in the serum, and 60 mg/kg was optimal. Compared with ZnS, Zn-Prot M significantly increased duodenal villus height and VH/CD ratio, thus Zn-Prot M was more effective than ZnS. Both ZnS and Zn-Prot M significantly down-regulated TNF-α, IL-1ß, and MyD88 in 102-day-old duodenum, and IL-1ß, IL-6, and NFKBIA in jejunum and ileum at 74, 88, and 102 days old, with 60 mg/kg Zn-Prot M determined as optimal. In conclusion, our study demonstrates that Zn-Prot M is superior to ZnS in improving intestinal immunity in Xueshan chickens, and 60 mg/kg is the optimal addition dose.

2.
Front Immunol ; 14: 1308907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259441

RESUMO

Zinc (Zn), an essential trace element for poultry, plays a crucial role in promoting growth, improving feed conversion efficiency, enhancing antioxidant activity, and preventing disease. This study investigated the impact of different levels and sources of dietary Zn supplementation on the growth performance, intestinal morphology and antioxidant activity of broiler chickens under heat stress conditions. In this experiment, 1024 Xueshan chickens were divided into eight groups and subjected to heat stress conditions with different levels of Zn supplementation (30 mg/kg, 60 mg/kg, and 90 mg/kg) using organic or inorganic sources. Our findings indicated that dietary Zn supplementation significantly increased the feed-to-weight ratio of broilers during the experimental period under heat stress. Moreover, Zn supplementation positively increased the villus height and villus width in the jejunum and ileum at 74 and 88 days old, with the 60 and 90 mg/kg groups outperforming other groups, and organic Zn was more effective than inorganic Zn. Furthermore, Zn supplementation significantly increased serum antioxidant levels, with higher superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-px) activities, and organic Zn was more effective than inorganic Zn. This study concludes that Zn supplementation is beneficial in mitigating the detrimental impacts of heat stress on broilers. The findings suggest that employing Zn as a strategy can enhance productivity in the poultry industry by positively influencing intestinal morphology and bolstering antioxidant activity to counteract potential stress.


Assuntos
Galinhas , Transtornos de Estresse por Calor , Animais , Antioxidantes/farmacologia , Estresse Oxidativo , Zinco/farmacologia , Transtornos de Estresse por Calor/prevenção & controle , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico
3.
Front Immunol ; 13: 1083788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561763

RESUMO

Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has a long history of treating dysentery in the clinic. Over the past two decades, the polytrophic, pharmacological, and biochemical properties of BBR have been intensively studied. The key functions of BBR, including anti-inflammation, antibacterial, antioxidant, anti-obesity, and even antitumor, have been discovered. However, the underlying mechanisms of BBR-mediated regulation still need to be explored. Given that BBR is also a natural nutrition supplement, the modulatory effects of BBR on nutritional immune responses have attracted more attention from investigators. In this mini-review, we summarized the latest achievements of BBR on inflammation, gut microbes, macrophage polarization, and immune responses associated with their possible tools in the pathogenesis and therapy of ulcerative colitis and cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-inflammatory actions of BBR to benefit future clinical applications.


Assuntos
Berberina , Colite Ulcerativa , Neoplasias , Humanos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Reposicionamento de Medicamentos , Inflamação/tratamento farmacológico , Inflamação/patologia , Neoplasias/tratamento farmacológico , Medicina Tradicional Chinesa
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555192

RESUMO

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health security. However, no clinically approved drug is available for the specific treatment of JEV infection, and the commercial vaccines derived from the genotype III JEV strains merely provided partial protection against the GI JEV. Thus, an easy-to-perform platform in high-throughput is urgently needed for the antiviral drug screening and assessment of neutralizing antibodies specific against the GI JEV. In this study, we established a reverse genetics system for the GI JEV strain (YZ-1) using a homologous recombination strategy. Using this reverse genetic system, a gaussia luciferase (Gluc) expression cassette was inserted into the JEV genome to generate a reporter virus (rGI-Gluc). The reporter virus exhibited similar growth kinetics to the parental virus and remained genetically stable for at least ten passages in vitro. Of note, the bioluminescence signal strength of Gluc in the culture supernatants was well correlated with the viral progenies determined by viral titration. Taking advantage of this reporter virus, we established Gluc readout-based assays for antiviral drug screening and neutralizing antibody detection against the GI JEV. These Gluc readout-based assays exhibited comparable performance to the assays using an actual virus and are less time consuming and are applicable for a high-throughput format. Taken together, we generated a GI JEV reporter virus expressing a Gluc gene that could be a valuable tool for an antiviral drug screening assay and neutralization assay.


Assuntos
Copépodes , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Anticorpos Neutralizantes , Antivirais , Avaliação Pré-Clínica de Medicamentos , Genótipo , Luciferases/genética , Anticorpos Antivirais
5.
Front Nutr ; 9: 899829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747264

RESUMO

Clinical cases and animal experiments show that high-fat (HF) diet is involved in inflammatory bowel disease (IBD), but the specific mechanism is not fully clear. A close association between long-term HF-induced obesity and IBD has been well-documented. However, there has been limited evaluation of the impact of short-term HF feeding on the risk of intestinal inflammation, particularly on the risk of disrupted metabolic homeostasis. In this study, we analyzed the metabolic profile and tested the vulnerability of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis after short-term HF feeding in mice. The results showed that compared with the control diet (CD), the fatty acid (FA), amino acid (AA), and bile acid (BA) metabolisms of mice in the HF group were significantly changed. HF-fed mice showed an increase in the content of saturated and unsaturated FAs and a decrease in the content of tryptophan (Trp). Furthermore, the disturbed spatial distribution of taurocholic acid (TCA) in the ileum and colon was identified in the HF group using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). After HF priming, mice on TNBS induction were subjected to more severe colonic ulceration and histological damage compared with their CD counterparts. In addition, TNBS enema induced higher gene expressions of mucosal pro-inflammatory cytokines under HF priming conditions. Overall, our results show that HF may promote colitis by disturbing lipid, AA, and BA metabolic homeostasis and inflammatory gene expressions.

6.
Liver Int ; 42(6): 1449-1466, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184357

RESUMO

BACKGROUND & AIMS: Disruption of lipid metabolism is largely linked to metabolic disorders, such as hypercholesterolemia (HCL) and liver steatosis. While cholesterol metabolic re-programmers can serve as targets for relevant interventions. Here we explored the dietary conjugated linoleic acids (CLA)-induced HCL in mice and the molecular regulation behind it. METHODS: A high dose of CLA supplementation in the diet was used to induce HCL in mice and was found to cause a hyper-activated cholesterol biosynthesis programme in the liver, leading to cholesterol metabolism dysregulation. The effects of a small-molecule drug targeting PPARα, i.e., GW6471 were studied in vivo in mice fed diets with CLA supplementation for 28 days, and in primary hepatocytes derived from HCL-mice in vitro. RESULTS: We demonstrate that CLA induced HCL and liver steatosis through multiple pathways. Among which was the PPARα-mediated cholesterogenesis. It was found to cooperate with SREBP2 via binding to Hmgcr and Dhcr7 (genes encoding key enzymes of the cholesterol biosynthetic pathway) and recruits the histone marks H3K27ac and H3K4me1 and cofactors. PPARα inhibition disrupts its physical association with SREBP2 by blocking cobinding of PPARα and SREBP2 to the genomic DNA response element. We showed that NR RORγ functions as an essential mediator that facilitates the interaction of PPARα and SREBP2 to modulate the cholesterol biosynthesis genes expression. CONCLUSIONS: Our study unravels that the small-molecule compound GW6471 exerts an attractive therapeutic effect for CLA-induced HCL, involving multiple pathways with the "PPARα-RORγ-SREBP2" being a potential complex player in this hepatic cholesterol biosynthesis programming.


Assuntos
Fígado Gorduroso , Hipercolesterolemia , Hiperlipidemias , Ácidos Linoleicos Conjugados , Animais , Colesterol/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , PPAR alfa
7.
J Cell Physiol ; 236(6): 4387-4402, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33184849

RESUMO

Nonalcoholic-fatty-liver-disease (NAFLD) is the result of imbalances in hepatic lipid partitioning and is linked to dietary factors. We demonstrate that conjugated linoleic acid (CLA) when given to mice as a dietary supplement, induced an enlarged liver, hepatic steatosis, and increased plasma levels of fatty acid (FA), alanine transaminase, and triglycerides. The progression of NAFLD and insulin resistance was reversed by GW6471 a small-molecule antagonist of peroxisome proliferator-activated receptor α (PPARα). Transcriptional profiling of livers revealed that the genes involved in FA oxidation and lipogenesis as two core gene programs controlled by PPARα in response to CLA and GW6471 including Acaca and Acads. Bioinformatic analysis of PPARα ChIP-seq data set and ChIP-qPCR showed that GW6471 blocks PPARα binding to Acaca and Acads and abolishes the PPARα-mediated local histone modifications of H3K27ac and H3K4me1 in CLA-treated hepatocytes. Thus, our findings reveal a dual role of PPARα in the regulation of lipid homeostasis and highlight its druggable nature in NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Lipogênese , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Histonas/metabolismo , Resistência à Insulina , Ácidos Linoleicos Conjugados , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Oxazóis/farmacologia , Oxirredução , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , Transdução de Sinais , Ativação Transcricional , Tirosina/análogos & derivados , Tirosina/farmacologia
8.
Poult Sci ; 99(6): 3111-3120, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32475448

RESUMO

Maternal betaine was reported to regulate offspring hepatic cholesterol metabolism in mammals. However, it is unclear whether and how feeding betaine to laying hens affects hepatic cholesterol metabolism in offspring chickens. Rugao yellow-feathered laying hens (n = 120) were fed basal or 0.5% betaine-supplemented diet for 28 D before the eggs were collected for incubation. Maternal betaine significantly decreased the hepatic cholesterol content (P < 0.05) in offspring chickens. Accordingly, the cholesterol biosynthetic enzymes, sterol regulator element-binding protein 2 (SREBP2) and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were decreased, while cholesterol-7alpha-hydroxylase (CYP7A1), which converts cholesterol to bile acids, was increased at both mRNA and protein levels in betaine-treated offspring chickens. Hepatic mRNA and protein expression of low-density lipoprotein receptor was significantly (P < 0.05) increased, while the mRNA abundance of cholesterol acyltransferase 1 (ACAT1) that mediates cholesterol esterification was significantly (P < 0.05) decreased in the betaine group. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and betaine homocysteine methyltransferase were increased (P < 0.05), which was associated with modifications of CpG methylation on affected cholesterol metabolic genes. Furthermore, the level of CpG methylation on gene promoters was increased (P < 0.05) for sterol regulator element-binding protein 2 and abundance of cholesterol acyltransferase 1 yet decreased (P < 0.05) for cholesterol-7alpha-hydroxylase. These results indicate that maternal betaine supplementation significantly decreases hepatic cholesterol deposition through epigenetic regulation of cholesterol metabolic genes in offspring juvenile chickens.


Assuntos
Proteínas Aviárias/genética , Betaína/metabolismo , Galinhas/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol/metabolismo , Metilação de DNA , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Ração Animal/análise , Animais , Proteínas Aviárias/metabolismo , Betaína/administração & dosagem , Galinhas/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Metilação de DNA/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Epigênese Genética , Fígado/metabolismo , Masculino , Herança Materna , Regiões Promotoras Genéticas/efeitos dos fármacos , Distribuição Aleatória , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
9.
Eur J Nutr ; 56(5): 1899-1909, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27250629

RESUMO

PURPOSE: In this study, we sought to investigate the effects of maternal betaine supplementation on the expression and regulation of GALK1 gene in the liver of neonatal piglets. METHODS: Sixteen sows of two groups were fed control or betaine-supplemented diets (3 g/kg), respectively, throughout the pregnancy. Newborn piglets were individually weighed immediately after birth, and one male piglet close to mean body weight from the same litter was selected and killed before suckling. Serum samples of newborn piglets were analyzed for biochemical indexes, hormone and amino acid levels. Liver samples were analyzed for GALK1 expression by real-time PCR and western blotting, while GALK1 regulational mechanism was analyzed by methylated DNA immunoprecipitation, chromatin immunoprecipitation and microRNAs expression. RESULTS: Betaine-exposed neonatal piglets had lower serum concentration of galactose, which was associated with significantly down-regulated hepatic GALK1 expression. The repression of GALK1 mRNA expression was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3 on its promoter. Binding sites of SP1, GR and STAT3 were predicted on GALK1 promoter, and decreased SP1 protein content and lower SP1 binding to GALK1 promoter were detected in the liver of betaine-exposed piglets. Furthermore, the expression of miRNA-149 targeting GALK1 was up-regulated in the liver of betaine-exposed piglets, along with elevated miRNAs-processing enzymes Dicer and Ago2. CONCLUSIONS: Our results suggest that maternal dietary betaine supplementation during gestation suppresses GALK1 expression in the liver of neonatal piglets, which involves complex gene regulation mechanisms including DNA methylation, histone modification, miRNAs expression and SP1-mediated transcriptional modulation.


Assuntos
Betaína/administração & dosagem , Repressão Epigenética , Galactoquinase/genética , Fator de Transcrição Sp1/metabolismo , Aminoácidos/sangue , Animais , Animais Recém-Nascidos , Betaína/sangue , Biomarcadores/sangue , Imunoprecipitação da Cromatina , Metilação de DNA/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Feminino , Galactoquinase/metabolismo , Galactose/metabolismo , Regulação da Expressão Gênica , Insulina/sangue , Fígado/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Fator de Transcrição Sp1/genética , Suínos
10.
Nutrients ; 8(10)2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27763549

RESUMO

Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring.


Assuntos
Betaína/farmacologia , Colesterol/genética , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Betaína/sangue , Aleitamento Materno , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/metabolismo , Metilação de DNA , Feminino , Expressão Gênica , Código das Histonas , Histonas , Lactação , Receptores X do Fígado/metabolismo , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Regiões Promotoras Genéticas , Receptores Depuradores Classe B/metabolismo , Suínos , Desmame
11.
Int J Biochem Cell Biol ; 79: 222-230, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27592453

RESUMO

Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P<0.01) down-regulated, while SLC19A1 was up-regulated (P<0.01) in FD group. FD cells exhibited significantly (P<0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P<0.01) down-regulated and IGF-1 concentration was decreased (P<0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P<0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.


Assuntos
Apoptose , Deficiência de Ácido Fólico/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Hipocampo/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/patologia , Fase de Repouso do Ciclo Celular , Animais , Transporte Biológico , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Ilhas de CpG/genética , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Transportadores de Ácido Fólico/genética , Camundongos , Regiões Promotoras Genéticas/genética , Proteína Carregadora de Folato Reduzido/genética , Transdução de Sinais
12.
Biochim Biophys Acta ; 1861(1): 41-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494244

RESUMO

Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H3K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.


Assuntos
Animais Recém-Nascidos/metabolismo , Betaína/administração & dosagem , Epigênese Genética , Lipogênese , Fígado/metabolismo , Receptores de Glucocorticoides/fisiologia , Animais , Metilação de DNA , Suplementos Nutricionais , Feminino , Gravidez , Regiões Promotoras Genéticas , Suínos
13.
J Nutr Biochem ; 26(12): 1622-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26359029

RESUMO

Betaine, which donates methyl groups through methionine metabolism for DNA and protein methylation, is critical for epigenetic gene regulation, especially during fetal development. Here we fed gestational sows with control or betaine supplemented diets (3 g/kg) throughout the pregnancy to explore the effects of maternal betaine on hepatic cell proliferation in neonatal piglets. Neonatal piglets born to betaine-supplemented sows demonstrated a reduction of cell number and DNA content in the liver, which was associated with significantly down-regulated hepatic expression of cell cycle regulatory genes, cyclin D2 (CCND2) and presenilin1 (PSEN1). Moreover, STAT3 binding to the promoter of CCND2 and PSEN1 was also lower in betaine-exposed piglets, accompanied by strong reduction of STAT3 mRNA and protein expression, along with its phosphorylation at Tyr705 and Ser727 residues. Also, prenatal betaine exposure significantly attenuated upstream kinases of STAT3 signaling pathway (phospho-ERK1/2, phospho-SRC and phospho-JAK2) in the livers of neonates. Furthermore, the repressed STAT3 expression in the liver of betaine-exposed piglets was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3 on its promoter, together with significantly up-regulated expression of H3K27me3 and enhancer of zeste homolog 2 (EZH2) proteins, as well as miR-124a, which targets STAT3. Taken together, our results suggest that maternal dietary betaine supplementation during gestation inhibits hepatic cell proliferation in neonatal piglets, at least partly, through epigenetic regulation of hepatic CCND2 and PSEN1 genes via a STAT3-dependent pathway. These neonatal changes in cell cycle and proliferation regulation may lead to lower liver weight and hepatic DNA content at weaning.


Assuntos
Ração Animal , Betaína/química , Ciclina D2/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Presenilina-1/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Proliferação de Células , Metilação de DNA , Suplementos Nutricionais , Epigênese Genética , Feminino , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Tamanho do Órgão , Gravidez , Prenhez , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Suínos , Regulação para Cima
14.
Eur J Nutr ; 54(7): 1201-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25410747

RESUMO

PURPOSE: The adequate supply of methyl donors is critical for the normal development of brain. The purpose of the present study was to investigate the effects of maternal betaine supplementation on hippocampal gene expression in neonatal piglets and to explore the possible mechanisms. METHODS: Gestational sows were fed control or betaine-supplemented (3 g/kg) diets throughout the pregnancy. Immediately after birth, male piglets were killed, and the hippocampus was dissected for analyses. The mRNA abundance was determined by reverse transcription real-time polymerase chain reaction. Protein content was measured by Western blot, and DNA methylation was detected by methylated DNA immunoprecipitation assay. RESULTS: Prenatal betaine supplementation did not alter the body weight or the hippocampus weight, but increased the hippocampal DNA content as well as the mRNA expression of proliferation-related genes. Prenatal betaine supplementation increased serum level of methionine (P < 0.05) and up-regulated (P < 0.05) the mRNA and protein expression of betaine-homocysteine methyltransferase, glycine N-methyltransferase and DNA methyltransferase 1 in the neonatal hippocampus. Hippocampal expression of insulin growth factor II (IGF2) and its receptors IGF1R and IGF2R were all significantly up-regulated (P < 0.05) in betaine-treated group, together with a significant activation (P < 0.01) of the downstream extracellular signal-regulated kinase 1/2. Moreover, the differentially methylated region (DMR) 1 and 2 on IGF2 locus was found to be hypermethylated (P < 0.05) in the hippocampus of betaine-treated piglets. CONCLUSIONS: These results indicate that maternal betaine supplementation enhances betaine/methionine metabolism and DNA methyltransferase expression, causes hypermethylation of DMR on IGF2 gene, which was associated with augmented expression of IGF2 and cell proliferation/anti-apoptotic markers in the hippocampus of neonatal piglets.


Assuntos
Betaína/administração & dosagem , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Hipocampo/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/metabolismo , Animais , Animais Recém-Nascidos/sangue , Betaína/sangue , Feminino , Expressão Gênica , Loci Gênicos , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like II/genética , Metionina/sangue , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
15.
Br J Nutr ; 112(9): 1459-68, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25216241

RESUMO

To elucidate the effects of maternal dietary betaine supplementation on hepatic expression of cholesterol metabolic genes in newborn piglets and the involved epigenetic mechanisms, we fed gestational sows with control or betaine-supplemented diets (3 g/kg) throughout pregnancy. Neonatal piglets born to betaine-supplemented sows had higher serum methionine concentration and hepatic content of betaine, which was associated with significantly up-regulated hepatic expression of glycine N-methyltransferase. Prenatal betaine exposure increased hepatic cholesterol content and modified the hepatic expression of cholesterol metabolic genes in neonatal piglets. Sterol regulatory element-binding protein 2 was down-regulated at both mRNA and protein levels, while 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) was down-regulated at the mRNA level, but up-regulated at the protein level, in betaine-exposed piglets. The transcriptional repression of HMGCR was associated with CpG island hypermethylation and higher repressive histone mark H3K27me3 (histone H3 lysine 27 trimethylation) on the promoter, whereas increased HMGCR protein content was associated with significantly decreased expression of miR-497. Furthermore, LDL receptor was significantly down-regulated at both mRNA and protein levels in the liver of betaine-exposed piglets, which was associated with promoter CpG hypermethylation. In addition, the expression of cholesterol-27α-hydroxylase (CYP27α1) was up-regulated at both mRNA and protein levels, while the expression of cholesterol-7α-hydroxylase (CYP7α1) was increased at the mRNA level, but unchanged at the protein level associated with increased expression of miR-181. These results indicate that maternal betaine supplementation increases hepatic cholesterol content in neonatal piglets through epigenetic regulations of cholesterol metabolic genes, which involve alterations in DNA and histone methylation and in the expression of microRNA targeting these genes.


Assuntos
Animais Recém-Nascidos , Betaína/administração & dosagem , Colesterol/genética , Epigênese Genética/efeitos dos fármacos , Fígado/metabolismo , Sus scrofa , Animais , Betaína/farmacocinética , Ácidos e Sais Biliares/sangue , Colesterol/análise , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/genética , Metilação de DNA , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Metionina/sangue , Metionina/metabolismo , MicroRNAs/genética , Gravidez , RNA Mensageiro/análise , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
16.
PLoS One ; 9(8): e105504, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153319

RESUMO

In this study, gestational sows were fed control or betaine-supplemented diets (3 g/kg) throughout the pregnancy, and the newborn piglets were used to elucidate whether maternal dietary betaine affected offspring hepatic gluconeogenic genes through epigenetic mechanisms. Neonatal piglets born to betaine-supplemented sows had significantly higher serum and hepatic betaine contents, together with significantly greater expression of methionine metabolic enzymes in the liver. Interestingly, significantly higher serum concentrations of lactic acid and glucogenic amino acids, including serine, glutamate, methionine and histidine, were detected in the piglets born to betaine-supplemented sows, which were coincident with higher hepatic glycogen content and PEPCK1 enzyme activity, as well as greater protein expression of gluconeogenic enzymes, pyruvate carboxylase (PC), cytoplasmic phosphoenolpyruvate carboxykinase (PEPCK1), mitochondrional phosphoenolpyruvate carboxykinase (PEPCK2) and fructose-1, 6-bisphosphatase (FBP1). Moreover, maternal betaine significantly changed the methylation status of both CpGs and histones on the promoter of gluconeogenic genes. The lower PEPCK1 mRNA was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3, while the up-regulated PEPCK2 and FBP1 mRNA was associated with DNA hypomethylation and more enriched activation histone mark H3K4me3. Furthermore, the expression of two miRNAs predicted to target PC and 6 miRNAs predicted to target PEPCK1 was dramatically suppressed in the liver of piglets born to betaine-supplemented sows. Our results provide the first evidence that maternal betaine supplementation affects hepatic gluconeogenic genes expression in newborn piglets through enhanced hepatic methionine metabolism and epigenetic regulations, which involve DNA and histone methylations, and possibly miRNAs-mediated post-transcriptional mechanism.


Assuntos
Betaína/administração & dosagem , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Gluconeogênese/genética , Fígado/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Animais Recém-Nascidos , Metilação de DNA , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Suínos
17.
Diabetes ; 63(5): 1475-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24379351

RESUMO

Epigenetic regulation of neuropeptide genes associated with central appetite control plays an important part in the development of nutritional programming. While proopiomelanocortin (POMC) is critical in appetite control, the molecular mechanism of methylation-related regulation of POMC remains unclear. Based on the report that the proximal specificity protein 1 (Sp1) binding site in POMC promoter is crucial for the leptin-mediated activation of POMC, the methylation of this site was investigated in this study in both cultured cells and postnatal mice reared by the dams with dietary supplementation of conjugated linoleic acids (CLAs). The change of milk composition made the offspring undergo the increase of food intake, suppression of POMC, attenuation of Sp1-promoter interaction, and the hypermethylation of cytosine guanine (CpG) dinucleotides at -100 and -103 within the Sp1 binding site of POMC promoter, which may be associated with the decrease of hypothalamic Sp1 and/or plasma S-adenosylhomocystein. In cultured cells, the methylation of the -100 CpG dinucleotides of the POMC promoter blocked both the formation of Sp1-promoter complex and the leptin-induced activation of POMC. In addition, a catch-up growth and adult metabolic changes like adult hyperglycemia and insulin resistance were observed in these postnatal pups, suggesting that this CLA-mediated hypermethylation may contribute, at least in part, to the metabolic disorders.


Assuntos
Hipotálamo/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Metilação de DNA , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Glucose/análise , Hipotálamo/efeitos dos fármacos , Insulina/análise , Leptina/genética , Leptina/metabolismo , Camundongos , Leite/química , Pró-Opiomelanocortina/genética , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética
18.
Biochem Biophys Res Commun ; 422(4): 621-6, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609209

RESUMO

Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor α (TNFα) and the positive regulator Peroxisome Proliferator-Activated Receptor-γ (PPARγ) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Proteínas de Transporte/genética , Epididimo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Linoleicos Conjugados/administração & dosagem , Lipólise/efeitos dos fármacos , Fosfoproteínas/genética , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Suplementos Nutricionais , Ingestão de Alimentos , Epididimo/metabolismo , Masculino , Camundongos , Perilipina-1 , Fosfoproteínas/antagonistas & inibidores , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA