Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Acta Pharm Sin B ; 13(3): 1303-1317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970207

RESUMO

In situ and real-time monitoring of responsive drug release is critical for the assessment of pharmacodynamics in chemotherapy. In this study, a novel pH-responsive nanosystem is proposed for real-time monitoring of drug release and chemo-phototherapy by surface-enhanced Raman spectroscopy (SERS). The Fe3O4@Au@Ag nanoparticles (NPs) deposited graphene oxide (GO) nanocomposites with a high SERS activity and stability are synthesized and labeled with a Raman reporter 4-mercaptophenylboronic acid (4-MPBA) to form SERS probes (GO-Fe3O4@Au@Ag-MPBA). Furthermore, doxorubicin (DOX) is attached to SERS probes through a pH-responsive linker boronic ester (GO-Fe3O4@Au@Ag-MPBA-DOX), accompanying the 4-MPBA signal change in SERS. After the entry into tumor, the breakage of boronic ester in the acidic environment gives rise to the release of DOX and the recovery of 4-MPBA SERS signal. Thus, the DOX dynamic release can be monitored by the real-time changes of 4-MPBA SERS spectra. Additionally, the strong T2 magnetic resonance (MR) signal and NIR photothermal transduction efficiency of the nanocomposites make it available for MR imaging and photothermal therapy (PTT). Altogether, this GO-Fe3O4@Au@Ag-MPBA-DOX can simultaneously fulfill the synergistic combination of cancer cell targeting, pH-sensitive drug release, SERS-traceable detection and MR imaging, endowing it great potential for SERS/MR imaging-guided efficient chemo-phototherapy on cancer treatment.

3.
Acta Biomater ; 136: 456-472, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562660

RESUMO

The synergistic manipulation of autophagy blocking with tumor targeting and penetration effects to enhance cancer cell killing during photothermal therapy (PTT) remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous prostate cancer cell membranes (CMs) onto the surface of mesoporous polydopamine nanoparticles (mPDA NPs) encapsulating the autophagy inhibitor chloroquine (CQ) for synergistically manipulating PTT and autophagy for anticancer treatment. The resulting biomimetic mPDA@CMs NPs-CQ system could escape macrophage phagocytosis, overcome the vascular barrier, and home in the homologous prostate tumor xenograft with high tumor targeting and penetrating efficiency. The mPDA NPs core endowed the mPDA@CMs NPs-CQ with good photothermal capability to mediate PTT killing of prostate cancer cells, while NIR-triggered CQ release from the nanosystem further arrested PTT-induced protective autophagy of cancer cells, thus weakening the resistance of prostate cancer cells to PTT. This combined PTT killing and autophagy blocking anticancer strategy could induce significant autophagosome accumulation, ROS generation, mitochondrial damage, endoplasmic reticulum stress, and apoptotic signal transduction, which finally results in synergistic prostate tumor ablation in vivo. This prostate cancer biomimetic nanosystem with synergistically enhanced anticancer efficiency achieved by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy against prostate cancer. STATEMENT OF SIGNIFICANCE: Autophagy is considered as one of the most efficient rescuer and reinforcement mechanisms of cancer cells against photothermal therapy (PTT)-induced cancer cell eradication. How to synergistically manipulate autophagy blocking with significant tumor targeting and penetration to enhance PTT-mediated cancer cell killing remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous cancer cell membranes onto the surface of mesoporous polydopamine nanoparticles with encapsulation of the autophagy inhibitor chloroquine for synergistic antitumor treatment with high tumor targeting and penetrating efficiency both in vitro and in vivo. This biomimetic nanosystem with synergistically enhanced anticancer efficiency by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Autofagia , Biomimética , Humanos , Indóis , Masculino , Fototerapia , Polímeros
4.
Colloids Surf B Biointerfaces ; 205: 111880, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34116399

RESUMO

Development of a multifunctional nanotherapeutic agent with high contrast-enhanced dual-modal imaging and photothermal therapy (PTT) efficacy is of great interest. Combination of ultrasound (US) and computed tomography (CT) imaging offers high spatial resolution images, showing great potential in medical imaging. Herein, the semiconducting perfluorohexane (PFH) nanodroplets, MoS2-PFH-PLLAs, are developed by stabilizing PFH droplets with the coating shell of poly (lactic-co-glycolic acid) (PLLA) and encapsulating the droplets with photoabsorbers of ultrasmall molybdenum disulfide (MoS2) nanodots. Upon near-infrared (NIR) irradiation, the MoS2-PFH-PLLAs can absorb the NIR light and convert it into heat, which not only promotes liquid-to-gas phase transition of PFH but also triggers photothermal heating, resulting in contrast-enhanced US/CT imaging and photothermal killing effect in vitro. Furthermore, the production of microbubbles can serve as the blasting agents to collaboratively enhance PTT efficacy after NIR irradiation. When intravenously injected into tumor-bearing mice, the MoS2-PFH-PLLAs exhibit a dual-modal US/CT imaging-guided synergistically therapeutic efficacy under NIR irradiation, resulting in tumor ablation. These nanotherapeutic agents demonstrate good biocompatibility, highly contrast-enhanced US/CT imaging, and combinational enhanced PTT efficacy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem , Fluorocarbonos , Camundongos , Molibdênio , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
5.
Bioinorg Chem Appl ; 2021: 5534870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868396

RESUMO

How to actively target tumor sites manipulating the controllable release of the encapsulated anticancer drugs and photosensitizers for synergistic anticancer therapy remains a big challenge. In this study, a cancer cell-targeted, near-infrared (NIR) light-triggered and anticancer drug loaded liposome system (LPs) was developed for synergistic cancer therapy. Photosensitizer indocyanine green (ICG) and chemotherapy drug Curcumin (CUR) were coencapsulated into the liposomes, followed by the surface conjugation of GE11 peptide for epidermal growth factor receptor (EGFR) targeting on the cancer cell surface. Strictly controlled by NIR light, GE11 peptide modified and CUR/ICG-loaded LPs (GE11-CUR/ICG-LPs) could introduce hyperthermia in EGFR overexpressed A549 cancer cells for photothermal therapy, which could also trigger the increased release of CUR for enhanced cancer cell inhibition. GE11-CUR/ICG-LPs synergized photochemotherapy could induce reactive oxygen species (ROS) generation and cytoskeleton disruption to activate stronger apoptotic signaling events than the photothermal therapy or chemotherapy alone by regulating Bax/Bcl-2 and PI3K/AKT pathways. This EGFR-targeted drug-delivery nanosystem with NIR sensitivity may potentially serve in more effective anticancer therapeutics with reduced off-target effects.

6.
Acta Biomater ; 121: 605-620, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259958

RESUMO

How to enable protein degradation pathways including the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS) to enhance the efficacy of anticancer treatments remains a substantial challenge. Cobalt oxide nanoparticles (Co3O4 NPs) have attracted interest in recent years for their potential use as a synergistic anticancer treatment, although their therapeutic mechanisms of action are still poorly understood. Here, we describe the synergistic use of Co3O4 NPs as an autophagy inhibitor, chemosensitizer and photosensitizer, which manipulate protein degradation pathways (ALP and UPS) and photothermal therapy for enhanced anticancer treatments both in vitro and in vivo. We show that Co3O4 NPs can induce autolysosome accumulation and lysosomal functions damage by inhibiting lysosomal proteolytic activity and reducing intracellular ATP levels. Notably, Co3O4 NPs can be combined with the proteasome inhibitor, Carfilzomib (Cfz), to promote the accumulation of autophagic substrates, protein ubiquitination, and endoplasmic reticulum stress, and in doing so, inhibit cancer progression. By taking advantage of their photothermal conversion efficiency, Co3O4 NPs can also serve as photothermal sensitizer, which synergistically enhances the anticancer efficacy of Cfz both in vitro and in vivo. In summary, we provide evidence of a nanomaterial-synergized, photothermal anticancer strategy that synergistically targets cancer cell survival pathways and may eventually serve to enhance the anticancer efficacy of established cancer therapeutics.


Assuntos
Nanopartículas , Fototerapia , Linhagem Celular Tumoral , Cobalto/farmacologia , Óxidos , Proteólise
7.
Angew Chem Int Ed Engl ; 59(8): 3226-3234, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31756258

RESUMO

Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.


Assuntos
Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Isoniazida/química , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Selênio/química , Tuberculose/tratamento farmacológico , Humanos , Tuberculose/patologia
8.
Drug Deliv ; 24(1): 1549-1564, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29019267

RESUMO

Selenium nanoparticles (Se NPs) have attracted increasing interest in recent decades because of their anticancer, immunoregulation, and drug carrier functions. In this study, GE11 peptide-conjugated Se NPs (GE11-Se NPs), a nanosystem targeting EGFR over-expressed cancer cells, were synthesized for oridonin delivery to achieve enhanced anticancer efficacy. Oridonin loaded and GE11 peptide conjugated Se NPs (GE11-Ori-Se NPs) were found to show enhanced cellular uptake in cancer cells, which resulted in enhanced cancer inhibition against cancer cells and reduced toxicity against normal cells. After accumulation into the lysosomes of cancer cells and increase of oridonin release under acid condition, GE11-Ori-Se NPs were further transported into cytoplasm after the damage of lysosomal membrane integrity. GE11-Ori-Se NPs were found to induce cancer cell apoptosis by inducting reactive oxygen species (ROS) production, activating mitochondria-dependent pathway, inhibiting EGFR-mediated PI3K/AKT and inhibiting Ras/Raf/MEK/ERK pathways. GE11-Se NPs were also found to show active targeting effects against the tumor tissue in esophageal cancer bearing mice. And in nude mice xenograft model, GE11-Ori-Se NPs significantly inhibited the tumor growth via inhibition of tumor angiogenesis by reducing the angiogenesis-marker CD31 and activation of the immune system by enhancing IL-2 and TNF-α production. The selenium contents in mice were found to accumulate into liver, tumor, and kidney, but showed no significant toxicity against liver and kidney. This cancer-targeted design of Se NPs provides a new strategy for synergistic treating of cancer with higher efficacy and reduced side effects, introducing GE11-Ori-Se NPs as a candidate for further evaluation as a chemotherapeutic agent for EGFR over-expressed esophageal cancers.


Assuntos
Antineoplásicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Receptores ErbB/antagonistas & inibidores , Peptídeos/farmacologia , Selênio/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos do Tipo Caurano/administração & dosagem , Diterpenos do Tipo Caurano/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interleucina-2/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Nanopartículas/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacocinética , Fator de Necrose Tumoral alfa/biossíntese
9.
Scanning ; 38(6): 792-801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27280953

RESUMO

Polysaccharide compounds (PCs), which composed of different kinds of polysaccharides always isolated from different kinds of traditional Chinese medicine, are now attracting more and more attentions due to their strong immunomodulatory activities beyond the corresponding one-component polysaccharides. In this study, we demonstrated for the first time that PCs-1 and PCs-2 had strong immunomodulatory effects on macrophages both in in vitro and in vivo models by atomic force microscopy (AFM). By high resolution AFM imaging, PCs-1 and PCs-2 were found to inhibit LPS induced cell surface particle size and roughness increase in RAW264.7 macrophages, demonstrating the anti-inflammatory effects of PCs-1 and PCs-2 on macrophages. PCs-1 and PCs-2 were also proved to increase the particle size and roughness of resting RAW264.7 macrophages, which suggested that PCs could activate resting RAW264.7 macrophages. And additionally, PCs-1 and PCs-2 were also found to reverse the surface particle size and roughness decrease of peritoneal macrophages isolated from cyclophosphamide induced immunosuppressive mice, suggesting the activation effects of PCs-1 and PCs-2 on immunosuppressive macrophages. These results further enhanced our understanding of macrophage activations by direct imaging of cell surface ultrastructure and also highlighted AFM as a novel nanotool for macrophage detections. And most importantly, these results also indicated the outstanding immunomodulatory effects of PCs on macrophages, which therefore suggested that PCs could be served as a kind of novel immunomodulatory agents that would benefit human health. SCANNING 38:792-801, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Células Cultivadas , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica
10.
Appl Microbiol Biotechnol ; 97(3): 1051-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22945264

RESUMO

Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.


Assuntos
Antineoplásicos/toxicidade , Ácido Fólico/metabolismo , Nanopartículas/toxicidade , Selênio/toxicidade , Antineoplásicos/metabolismo , Apoptose , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Endocitose , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Selênio/metabolismo
11.
Eur J Pharm Sci ; 47(1): 28-34, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22579957

RESUMO

Quercetin is a popular flavonoid in plant foods, herbs, and dietary supplement. Germanium, a kind of trace elements, can enhance the body immunity. This study investigated the hydroxyl-radical-scavenging mechanism of the quercertin-germanium (IV) (Qu-Ge) complex to human erythrocytes, especially the effects on ultrastructure and mechanical properties of cell membrane, plasma membrane potential and intracellular free Ca(2+) concentration. Results showed that QuGe(2), a kind of the Qu-Ge complex, could reduce the oxidative damage of erythrocytes, change the cell-surface morphology, and partly recover the disruption of plasma membrane potential and intracellular free Ca(2+) level. Atomic force microscopy (AFM) was used to characterize the changes of the cell morphology, cell-membrane ultrastructure and biophysical properties at nanoscalar level. QuGe(2) has triggered the antioxidative factor to inhibit cellular damage. These results can improve the understanding of hydroxyl-radical-scavenging mechanism of human erythrocytes induced by the Qu-Ge complex, which can be potentially developed as a new antioxidant for treatment of oxidative damage.


Assuntos
Complexos de Coordenação/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Sequestradores de Radicais Livres/farmacologia , Germânio/farmacologia , Radical Hidroxila/sangue , Quercetina/farmacologia , Antioxidantes/farmacologia , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Citometria de Fluxo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Microscopia de Força Atômica , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA