Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 357, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993441

RESUMO

Post-traumatic stress disorder (PTSD) is a mental disorder that develops after exposure to a traumatic event. Owing to the relatively low rates of response and remission with selective serotonin reuptake inhibitors as the primary treatment for PTSD, there is a recognized need for alternative strategies to effectively address the symptoms of PTSD. Dysregulation of glutamatergic neurotransmission plays a critical role in various disorders, including anxiety, depression, PTSD, and Alzheimer's disease. Therefore, the regulation of glutamate levels holds great promise as a therapeutic target for the treatment of mental disorders. Electroacupuncture (EA) has become increasingly popular as a complementary and alternative medicine approach. It maintains the homeostasis of central nervous system (CNS) function and alleviates symptoms associated with anxiety, depression, and insomnia. This study investigated the effects of EA at the GV29 (Yintang) acupoint three times per week for 2 weeks in an animal model of PTSD. PTSD was induced using single prolonged stress/shock (SPSS) in mice, that is, SPS with additional foot shock stimulation. EA treatment significantly reduced PTSD-like behavior and effectively regulated serum corticosterone and serotonin levels in the PTSD model. Additionally, EA treatment decreased glutamate levels and glutamate neurotransmission-related proteins (pNR1 and NR2B) in the hippocampus of a PTSD model. In addition, neuronal activity and the number of Golgi-impregnated dendritic spines were significantly lower in the EA treatment group than in the SPSS group. Notably, EA treatment effectively reduced glutamate-induced excitotoxicity (caspase-3, Bax, and pJNK). These findings suggest that EA treatment at the GV29 acupoint holds promise as a potential therapeutic approach for PTSD, possibly through the regulation of NR2B receptor-mediated glutamate neurotransmission to reduce PTSD-like behaviors.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Humanos , Camundongos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Transmissão Sináptica
2.
Nutrients ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686847

RESUMO

Post-traumatic stress disorder (PTSD) is an anxiety disorder caused by traumatic or frightening events, with intensified anxiety, fear memories, and cognitive impairment caused by a dysfunctional hippocampus. Owing to its complex phenotype, currently prescribed treatments for PTSD are limited. This study investigated the psychopharmacological effects of novel COMBINATION herbal medicines on the hippocampus of a PTSD murine model induced by combining single prolonged stress (SPS) and foot shock (FS). We designed a novel herbal formula extract (HFE) from Chaenomeles sinensis, Glycyrrhiza uralensis, and Atractylodes macrocephala. SPS+FS mice were administered HFE (500 and 1000 mg/kg) once daily for 14 days. The effects of HFE of HFE on the hippocampus were analyzed using behavioral tests, immunostaining, Golgi staining, and Western blotting. HFE alleviated anxiety-like behavior and fear response, improved short-term memory, and restored hippocampal dysfunction, including hippocampal neurogenesis alteration and aberrant migration and hyperactivation of dentate granule cells in SPS+FS mice. HFE increased phosphorylation of the Kv4.2 potassium channel, extracellular signal-regulated kinase, and cAMP response element-binding protein, which were reduced in the hippocampus of SPS+FS mice. Therefore, our study suggests HFE as a potential therapeutic drug for PTSD by improving behavioral impairment and hippocampal dysfunction and regulating Kv4.2 potassium channel-related pathways in the hippocampus.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Canais de Potássio Shal , Transtornos de Ansiedade , Modelos Animais , Hipocampo
3.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890196

RESUMO

Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic events and is characterized by overwhelming fear and anxiety. Disturbances in the hypothalamic-pituitary-adrenal (HPA) axis are involved in the pathogenesis of mood disorders, including anxiety, PTSD, and major depressive disorders. Studies have demonstrated the relationship between the HPA axis response and stress vulnerability, indicating that the HPA axis regulates the immune system, fear memory, and neurotransmission. The selective serotonin reuptake inhibitors (SSRIs), sertraline and paroxetine, are the only drugs that have been approved by the United States Food and Drug Administration for the treatment of PTSD. However, SSRIs require long treatment times and are associated with lower response and remission rates; therefore, additional pharmacological interventions are required. Complementary and alternative medicine therapies ameliorate HPA axis disturbances through regulation of gut dysbiosis, insomnia, chronic stress, and depression. We have described the cellular and molecular mechanisms through which the HPA axis is involved in PTSD pathogenesis and have evaluated the potential of herbal medicines for PTSD treatment. Herbal medicines could comprise a good therapeutic strategy for HPA axis regulation and can simultaneously improve PTSD-related symptoms. Finally, herbal medicines may lead to novel biologically driven approaches for the treatment and prevention of PTSD.

4.
Mediators Inflamm ; 2022: 4754732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832305

RESUMO

Amyotrophic lateral sclerosis (ALS), a multicomplex neurodegenerative disease, has multiple underlying pathological factors and can induce other neuromuscular diseases, leading to muscle atrophy and respiratory failure. Currently, there is no effective drug for treating patients with ALS. Herbal medicine, used to treat various diseases, has multitarget effects and does not usually induce side effects. Each bioactive component in such herbal combinations can exert a mechanism of action to increase therapeutic efficacy. Herein, we investigated the efficacy of an herbal formula, comprising Achyranthes bidentata Blume, Eucommia ulmoides Oliver, and Paeonia lactiflora Pallas, in suppressing the pathological mechanism of ALS in male hSOD1G93A mice. Herbal formula extract (HFE) (1 mg/g) were orally administered once daily for six weeks, starting at eight weeks of age, in hSOD1G93A transgenic mice. To evaluate the effects of HFE, we performed footprint behavioral tests, western blotting, and immunohistochemistry to detect protein expression and quantitative PCR to detect mRNA levels in the muscles and spinal cord of hSOD1G93A mice. HFE-treated hSOD1G93A mice showed increased anti-inflammation, antioxidation, and regulation of autophagy in the muscles and spinal cord. Thus, HEF can be therapeutic candidates for inhibiting disease progression in patients with ALS. This study has some limitations. Although this experiment was performed only in male hSOD1G93A mice, studies that investigate the efficacy of HEF in various ALS models including female mice, such as mice modeling TAR DNA-binding protein 43 (TDP43) and ORF 72 on chromosome 9 (C9orf72) ALS, are required before it can be established that HEF are therapeutic candidates for patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Músculos/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
5.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326229

RESUMO

The progressive neurodegenerative disease, amyotrophic lateral sclerosis (ALS), is characterized by muscle weakness and atrophy owing to selective motoneuron degeneration. The anti-glutamatergic drug, riluzole (RZ), is the standard-of-care treatment for ALS. Bojungikgi-tang (BJIGT), a traditional herbal formula, improves motor function and prolongs the survival of mice with ALS. As ALS is a multicomplex disease, effective therapies must target multiple mechanisms. Here, we evaluated the efficacy of a BJIGT/RZ combination (5-week treatment) in 2-month-old hSOD1G93A mice with ALS. We performed quantitative polymerase chain reaction, Western blotting, immunohistochemistry, and enzyme activity assays. BJIGT/RZ significantly attenuated inflammation, autophagy, and metabolic and mitochondrial dysfunctions in the gastrocnemius (GC) compared with the control. It reduced the mRNA and protein levels of muscle denervation-related proteins and creatine kinase levels. The total creatine level was significantly higher in the BJIGT/RZ-treated GC. Moreover, after BJIGT/RZ treatment, the number of Nissl-stained motoneurons and choline acetyl transferase-positive neurons in the spinal cord significantly increased via the regulation of proinflammatory cytokines. Collectively, the BJIGT/RZ treatment was superior to single-drug treatments in alleviating multiple ALS-related pathological mechanisms in the ALS mouse model. Overall, BJIGT can serve as a dietary supplement and be combined with RZ to achieve superior therapeutic effects against ALS.

6.
Front Neurosci ; 15: 743705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858128

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by motor neuron loss and muscle atrophy. There is no prominent treatment for ALS as the pathogenic process in the skeletal muscle and spinal cord is complex and multifactorial. Therefore, we investigated the effects of a herbal formula on the multi-target effects in the skeletal muscle and spinal cord in hSOD1G93A transgenic mice. We prepared a herbal extract (HE) from Glycyrrhiza uralensis, Atractylodes macrocephala Koidzumi, Panax ginseng, and Astragalus membranaceus. Control and HE-treated mice underwent rotarod and footprint tests. We also performed immunohistochemical and Western blotting analyses to assess expression of inflammation-related and oxidative stress-related proteins in the muscle and spinal cord tissues. We found that the HE increased motor activity and reduced motor neuron loss in hSOD1G93A mice. In addition, the HE significantly reduced the levels of inflammatory proteins and oxidative stress-related proteins in the skeletal muscles and spinal cord of hSOD1G93A mice. Furthermore, we demonstrated that the HE regulated autophagy function and augmented neuromuscular junction in the muscle of hSOD1G93A mice. Based on these results, we propose that the HE formula may be a potential therapeutic strategy for multi-target treatment in complex and multifactorial pathological diseases.

7.
Integr Med Res ; 10(2): 100680, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33747784

RESUMO

BACKGROUND: Cognitive impairment is an age-dependent chronic disorder that exponentially worsens with age; however, its treatment is mostly symptomatic. Moxibustion is widely accepted in East Asia as a treatment for cognitive impairment. This systematic review aimed to verify the efficacy and underlying mechanism of moxibustion in treating cognitive impairment. METHODS: Sixteen trials involving 324 animals obtained from MEDLINE (PubMed), EMBASE, the Cochrane library, the Chinese National Knowledge Infrastructure, Wan-Fang, Cqvip, the Korean Studies Information Service System, and the Oriental Medicine Advanced Searching Integrated System met the inclusion criteria. We extracted the results of behavioral tests and immunohistochemical biomarkers from the included articles and evaluated the risk of bias and reporting quality. RESULTS: The moxibustion group showed significantly decreased escape latency, increased crossing times, and prolonged dwelling times in the Morris water maze test. There was a significantly enhanced latency period and reduced error time in the step-down test and nerve behavior score. The effects of moxibustion were found to be mediated by suppression of oxidative stress and apoptosis, modulation of inflammation and Aß genesis activation of vascular endothelial growth factor, and adjustment of metabolites in the tricarboxylic acid cycle and fatty acid metabolism. CONCLUSION: Our results demonstrated the therapeutic efficacy of moxibustion on cognitive impairment and suggested the putative mechanism. However, considering the small number of included studies, high bias risk, low reporting quality, and the limitations of animal experimentation, our results need to be confirmed by more detailed studies.

8.
Front Pharmacol ; 11: 606480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362561

RESUMO

The complexity of pathological mechanisms in Alzheimer's disease (AD) poses significant challenges to the development of corresponding drugs. Symptom-specific pharmacological interventions and alternative treatments provide promising treatment possibilities. Therefore, we considered a combination of selegiline (SEL) and electroacupuncture (EA). We used an animal model with AD to investigate the effect of a combination of these treatments on cognitive function. 5XFAD mice received a week of SEL treatment and 2 weeks of EA. Novel object recognition and Y-maze tests were subsequently performed to assess their cognitive functions. To determine the molecular action of the combination treatment, Western blots, Aß1-42 enzyme-linked immunosorbent assays (ELISA), and micro-positron-emission tomography were also performed to assess pathological markers and processes. The results were assessed based on the difference between untreated transgenic, SEL-treated, and SEL- and EA-treated groups of mice. Mice in the combined treatment group demonstrated significantly better cognitive functions, and lesser neuroinflammation than the comparative groups. In addition, mice treated with a combination of SEL and EA did not demonstrate a direct modulation of insoluble Aß but demonstrated greater glucose metabolism. Our findings demonstrated that SEL combined with EA treatment was associated with better cognitive functioning due to inhibition of neuroinflammation and increased glucose metabolism relative to the comparative groups in a mouse model with AD.

9.
J Ethnopharmacol ; 258: 112923, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32360798

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea has been used as a traditional medicine to control brain function and digestion. Recent works suggest that drinking green tea could prevent cognitive function impairment. During tea manufacturing processes, such as brewing and sterilization, green tea catechins are epimerized. However, the effects of heat-epimerized catechins on cognitive function are still unknown. To take this advantage, we developed a new green tea extract, high temperature processed-green tea extract (HTP-GTE), which has a similar catechin composition to green tea beverages. AIM OF THE STUDY: This study aimed to investigate the effect of HTP-GTE on scopolamine-induced cognitive dysfunction and neuronal differentiation, and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS: The neuronal differentiation promoting effects of HTP-GTE in SH-SY5Y cells was assessed by evaluating neurite length and the expression level of synaptophysin. The DNA methylation status at the synaptophysin promoter was determined in differentiated SH-SY5Y cells and in the hippocampi of mice. HTP-GTE was administered for 10 days at doses of 30, 100 and 300 mg/kg (p.o.) to mice, and its effects on cognitive functions were measured by Y-maze and passive avoidance tests under scopolamine-induced cholinergic blockade state. RESULTS: HTP-GTE induced neuronal differentiation and neurite outgrowth via the upregulation of synaptophysin gene expression. These beneficial effects of HTP-GTE resulted from reducing DNA methylation levels at the synaptophysin promoter via the suppression of DNMT1 activity. The administration of HTP-GTE ameliorated cognitive impairments in a scopolamine-treated mouse model. CONCLUSIONS: These results suggest that HTP-GTE could alleviate cognitive impairment by regulating synaptophysin expression and DNA methylation levels. Taken together, HTP-GTE would be a promising treatment for the cognitive impairment observed in dysfunction of the cholinergic neurotransmitter system.


Assuntos
Catequina/farmacologia , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Chá/química , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Catequina/química , Catequina/isolamento & purificação , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Temperatura Alta , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Escopolamina
10.
J Pharm Pharmacol ; 72(1): 149-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713882

RESUMO

OBJECTIVES: A botanical drug derived from the ethanolic extract composed of Clematis chinensis Osbeck (Ranunculaceae), Trichosanthes kirilowii Maximowicz (Cucurbitaceae) and Prunella vulgaris Linné (Lamiaceae) has been used to ameliorate rheumatoid arthritis as an ethical drug in Korea. In our study, we investigated the effect of this herbal complex extract (HCE) on schizophrenia-like behaviours induced by MK-801. METHODS: HCE (30, 100 or 300 mg/kg, p.o) was orally administered to male ICR mice to a schizophrenia-like animal model induced by MK-801. We conducted an acoustic startle response task, an open-field task, a novel object recognition task and a social novelty preference task. KEY FINDINGS: We found that a single administration of HCE (100 or 300 mg/kg) ameliorated MK-801-induced abnormal behaviours including sensorimotor gating deficits and social or object recognition memory deficits. In addition, MK-801-induced increases in phosphorylated Akt and GSK-3ß expression levels in the prefrontal cortex were reversed by HCE (30, 100 or 300 mg/kg). CONCLUSIONS: These results imply that HCE ameliorates MK-801-induced dysfunctions in prepulse inhibition, social interactions and cognitive function, partly by regulating the Akt and GSK-3ß signalling pathways.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Transtornos Neurológicos da Marcha/prevenção & controle , Extratos Vegetais/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/prevenção & controle , Filtro Sensorial/efeitos dos fármacos , Animais , Clematis , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Maleato de Dizocilpina , Transtornos Neurológicos da Marcha/induzido quimicamente , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/psicologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Fosforilação , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prunella , Reconhecimento Psicológico/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Psicologia do Esquizofrênico , Comportamento Social , Trichosanthes
11.
J Neuroinflammation ; 16(1): 264, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836020

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive abilities and memory leading to dementia. Electroacupuncture (EA) is a complementary alternative medicine approach, applying an electrical current to acupuncture points. In clinical and animal studies, EA causes cognitive improvements in AD and vascular dementia. However, EA-induced changes in cognition and microglia-mediated amyloid ß (Aß) degradation have not been determined yet in AD animals. Therefore, this study investigated the EA-induced molecular mechanisms causing cognitive improvement and anti-inflammatory activity in five familial mutation (5XFAD) mice, an animal model of AD. METHODS: 5XFAD mice were bilaterally treated with EA at the Taegye (KI3) acupoints three times per week for 2 weeks. To evaluate the effects of EA treatment on cognitive functions, novel object recognition and Y-maze tests were performed with non-Tg, 5XFAD (Tg), and EA-treated 5XFAD (Tg + KI3) mice. To examine the molecular mechanisms underlying EA effects, western blots, immunohistochemistry, and micro-positron emission tomography scans were performed. Furthermore, we studied synapse ultrastructures with transmission electron microscopy and used electrophysiology to investigate EA effects on synaptic plasticity in 5XFAD mice. RESULTS: EA treatment significantly improved working memory and synaptic plasticity, alleviated neuroinflammation, and reduced ultrastructural degradation of synapses via upregulation of synaptophysin and postsynaptic density-95 protein in 5XFAD mice. Furthermore, microglia-mediated Aß deposition was reduced after EA treatment and coincided with a reduction in amyloid precursor protein. CONCLUSIONS: Our findings demonstrate that EA treatment ameliorates cognitive impairment via inhibition of synaptic degeneration and neuroinflammation in a mouse model of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Eletroacupuntura/métodos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Camundongos , Camundongos Transgênicos
12.
Integr Med Res ; 8(4): 234-239, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31692669

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease that is characterized by selective motor neuron cell death in the motor cortex, brainstem, and spinal cord. Two drugs for ALS, riluzole and edaravone, have been approved by FDA for the treatment of ALS patients. However, they have many side effects, and riluzole extends the patient's life by only 2-3 months. Therefore, ALS patients seek an effective therapy for treating the symptoms or delaying the progression of ALS. Based on this, we review the effects of complementary and alternative medicine (CAM) in ALS animals or patients to verify the efficacy of CAM in incurable diseases. For this review, we searched published papers focusing on the effect of CAM in pre-clinical and clinical study in ALS. METHODS: The search keywords included amyotrophic lateral sclerosis, acupuncture, herbal medicine, Traditional Chinese medicine, CAM, animals, and clinical study through electronic databases PubMed and Google Scholar from their inception until March 2019. RESULTS: In the ALS animal model, CAM modulated the immune system to increase motor function by reducing the expression levels of neuroinflammatory proteins in the spinal cord. Besides this, ALS patients treated with herbal medicine showed improved disease symptoms, but clinical trials with larger sample sizes are needed to develop a treatment with this herbal medicine. CONCLUSION: This review shows that CAM may be useful for ALS treatment, but more evidence regarding the efficacy and molecular mechanisms is required to establish CAM as a good therapy for the treatment of ALS patients.

13.
Nutrients ; 11(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689925

RESUMO

Hochu-ekki-to (Bojungikgi-Tang (BJIGT) in Korea; Bu-Zhong-Yi-Qi Tang in Chinese), a traditional herbal prescription, has been widely used in Asia. Hochu-ekki-to (HET) is used to enhance the immune system in respiratory disorders, improve the nutritional status associated with chronic diseases, enhance the mucosal immune system, and improve learning and memory. Amyotrophic lateral sclerosis (ALS) is pathologically characterized by motor neuron cell death and muscle paralysis, and is an adult-onset motor neuron disease. Several pathological mechanisms of ALS have been reported by clinical and in vitro/in vivo studies using ALS models. However, the underlying mechanisms remain elusive, and the critical pathological target needs to be identified before effective drugs can be developed for patients with ALS. Since ALS is a disease involving both motor neuron death and skeletal muscle paralysis, suitable therapy with optimal treatment effects would involve a motor neuron target combined with a skeletal muscle target. Herbal medicine is effective for complex diseases because it consists of multiple components for multiple targets. Therefore, we investigated the effect of the herbal medicine HET on motor function and survival in hSOD1G93A transgenic mice. HET was orally administered once a day for 6 weeks from the age of 2 months (the pre-symptomatic stage) of hSOD1G93A transgenic mice. We used the rota-rod test and foot printing test to examine motor activity, and Western blotting and H&E staining for evaluation of the effects of HET in the gastrocnemius muscle and lumbar (L4-5) spinal cord of mice. We found that HET treatment dramatically inhibited inflammation and oxidative stress both in the spinal cord and gastrocnemius of hSOD1G93A transgenic mice. Furthermore, HET treatment improved motor function and extended the survival of hSOD1G93A transgenic mice. Our findings suggest that HET treatment may modulate the immune reaction in muscles and neurons to delay disease progression in a model of ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
Mol Neurobiol ; 56(4): 2394-2407, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30030751

RESUMO

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Medicamentos de Ervas Chinesas/uso terapêutico , Músculo Esquelético/fisiopatologia , Medula Espinal/fisiopatologia , Esclerose Lateral Amiotrófica/patologia , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Inflamação/patologia , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Atividade Motora/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
15.
Mediators Inflamm ; 2018: 5897817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046279

RESUMO

Amyotrophic lateral sclerosis (ALS), a progressive disorder, causes motor neuron degeneration and neuromuscular synapse denervation. Because this is a complex disease, there are no effective drugs for the treatment of patients with ALS. For example, riluzole is used in many countries but has many side effects and only increases the lifespan of patients by approximately 2-3 months. Therefore, patients with ALS often turn to complementary and alternative medicine, such as acupuncture, homeopathy, and herbal medicine, with the hope and belief of recovery, despite the lack of definite evidence on the efficacy of these methods. Gamisoyo-San (GSS), a herbal medicine known to improve health, has been used for stress-related neuropsychological disorders, including anorexia, in Asian countries, such as China, Korea, and Japan. To evaluate the effects of GSS on the spinal cord, we investigated the expression of neuroinflammatory and metabolic proteins in symptomatic hSOD1G93A mice. We observed that GSS reduces the expression of glial markers, including those for microglia and astrocytes, and prevents neuronal loss. Moreover, we found that GSS inhibits the expression of proteins related to Toll-like receptor 4 signaling and oxidative stress, known to cause neuroinflammation. Notably, GSS also regulates metabolism in the spinal cord of transgenic mice. These results suggest that GSS could be used for improving the immune system and increasing the life quality of patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Preparações de Plantas/farmacologia , Medula Espinal/efeitos dos fármacos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Heme Oxigenase-1/metabolismo , Sistema Imunitário , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Qualidade de Vida , Transdução de Sinais , Medula Espinal/patologia , Receptor 4 Toll-Like/metabolismo , Transferrina/metabolismo
16.
Exp Neurobiol ; 27(1): 1-15, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29535565

RESUMO

Cognitive impairment is age-related and manageable only with early diagnosis and prevention. Moxibustion is widely accepted in East Asia as useful for preventing cognitive impairment. This systematic review of animal studies was conducted to verify the efficacy of moxibustion in preventing cognitive impairment and to elucidate the underlying mechanism. Randomized controlled animal trials that established the efficacy of moxibustion in preventing cognitive impairment were included in the analysis. Results of behavioral tests and the signaling pathways elucidated were extracted and a meta-analysis was conducted with the behavioral test results. The risk of bias was evaluated using 9 items, and reporting quality was evaluated using the ARRIVE (Animal Research: Reporting In Vivo Experiments) Guidelines Checklist. Ten trials involving 410 animals met the inclusion criteria. All studies reported the benefit of moxibustion in preventing cognitive deficits caused by Alzheimer's disease (AD). Among five studies using the Morris water maze test, a significant effect of moxibustion in decreasing the escape time was reported in three studies, increasing the crossing times in four studies, and prolonging the dwelling time in two studies. The effects of moxibustion were demonstrated to be mediated by an increase in the activity of neurotrophins and heat shock protein, modulation of the cell cycle, and suppression of apoptosis and inflammation. However, considering the small number of included studies, the lack of studies investigating entire signaling pathways, and a high risk of bias and low reporting quality, our results need to be confirmed through more detailed studies.

17.
Mol Neurobiol ; 54(8): 5952-5960, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27686075

RESUMO

Vascular dementia (VaD) is caused by the reduction of blood supply by vessel occlusion and is characterized by progressive cognitive decline. VaD incidence has been growing due to the aging population, placing greater strain on social and economic resources. However, the pathological mechanisms underlying VaD remain unclear. Many studies have used the bilateral common carotid artery occlusion (BCCAO) animal model to investigate potential therapeutics for VaD. In this study, we investigated whether bee venom (BV) improves cognitive function and reduces neuroinflammation in the hippocampus of BCCAO animals. Animals were randomly divided into three groups: a sham group (n = 15), BCCAO control group (n = 15), and BV-treated BCCAO group (n = 15). BCCAO animals were treated with 0.1 µg/g BV at ST36 ("Joksamli" acupoint) four times every other day. In order to investigate the effect of BV treatment on cognitive function, we performed a Y-maze test. In order to uncover any potential relationship between these results and neuroinflammation, we also performed Western blotting in the BCCAO group. Animals that had been treated with BV showed an improved cognitive function and a reduced expression of neuroinflammatory proteins in the hippocampus, including Iba-1, TLR4, CD14, and TNF-α. Furthermore, we demonstrated that BV treatment increased pERK and BDNF in the hippocampus. The present study thus underlines the neuroprotective effect of BV treatment against BCCAO-induced cognitive impairment and neuroinflammation. Our findings suggest that BV may be an effective complementary treatment for VaD, as it may improve cognitive function and attenuate neuroinflammation associated with dementia.


Assuntos
Venenos de Abelha/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Disfunção Cognitiva/complicações , Demência Vascular/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pontos de Acupuntura , Animais , Doenças das Artérias Carótidas/tratamento farmacológico , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino
18.
Am J Chin Med ; 44(2): 401-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27080948

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons, which cause paralysis and respiratory dysfunction. There is currently no permanently effective drug for patients with ALS. Ginsenoside Re (G-Re), one of the most active ingredients of ginseng, has pharmacological activities that affect a number of targets. To investigate the effects of G-Re on neuroinflammation, we used G-Re (2.5[Formula: see text][Formula: see text]g/g) at the Joksamni acupressure point (ST36) once every other day for one week. To evaluate G-Re function in symptomatic human-superoxide dismutase 1 (hSOD1[Formula: see text] transgenic mice, immunohistochemistry and Western blot analysis were performed with the spinal cord of symptomatic hSOD1(G93A) transgenic mice. Here, we report that G-Re exhibits potent neuroprotective effects against neuroinflammation in a murine model of ALS. G-Re treatment reduced the loss of motor neurons and active-microglia-related expression of Iba-1 in the spinal cord of symptomatic hSOD1(G93A) transgenic mice. In addition, compared with age-matched hSOD1(G93A) mice, G-Re-treated hSOD1(G93A) mice showed a significant reduction in expression of pro-inflammatory proteins such as CD14 and TNF-[Formula: see text] protein related to TLR4 signaling pathway. G-Re administration also led to a decrease in cell death-related phospho-p38 protein levels, and had an antioxidative effect by reducing HO1 expression. Together, our data suggest that G-Re could have potent anti-neuroinflammatory effects on ALS by inhibiting the TLR4 pathway.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/administração & dosagem , Ginsenosídeos/isolamento & purificação , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Neurônios Motores/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/isolamento & purificação , Panax/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Medula Espinal/citologia , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Mol Neurobiol ; 53(10): 7228-7236, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26687230

RESUMO

Mild cognitive impairment (MCI) is considered as an intermediate zone between normal aging and dementia. The most prominent feature of MCI is an isolated mild decline in memory, whereas other cognitive functions remain intact. The symptoms of vascular cognitive impairment (VCI) range from MCI to dementia, and an animal model of VCI has been established in a gerbil by transient bilateral common carotid artery occlusion (BCCAO). In the current study, we set out to investigate whether electroacupuncture (EA) could improve memory in gerbils with BCCAO-induced MCI. Animals were randomly divided into two groups: sham-operated group (n = 17) and a model group that was subdivided into BCCAO, n = 17, and EA-treated BCCAO, n = 28. Gerbils were treated with EA at KI3 or GV20 four times every other day using a set of electrical stimulus pulses (1 mA, 2 Hz) that were applied for 20 min. For investigation of cognitive function, we performed a Y-maze test and Western blotting to identify the expression of neuroinflammatory proteins. EA treatment at KI3 ("Taegye" acupoint) improved cognitive function and reduced the expression of neuroinflammatory proteins including ionized calcium-binding adaptor molecule 1, toll-like receptor 4, tumor necrosis factor alpha, and phospho-extracellular signal-regulated kinase in the hippocampus of gerbils that had undergone BCCAO. Furthermore, using micro-positron emission tomography/computed tomography, we demonstrated that EA treatment increased glucose metabolism in the hippocampus of these animals. The present study highlights the neuroprotective effect of EA treatment against BCCAO-induced memory dysfunction, neuroinflammation, and glucose metabolism. Our findings suggest that EA, which has previously been used in complementary and alternative medicine, might also be considered as a therapy that can improve memory and reduce neuroinflammation associated with dementia.


Assuntos
Doenças das Artérias Carótidas/terapia , Artéria Carótida Primitiva/patologia , Eletroacupuntura , Fármacos Neuroprotetores/farmacologia , Pontos de Acupuntura , Animais , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Gerbillinae , Glucose/metabolismo , Inflamação/patologia , Memória Espacial/efeitos dos fármacos
20.
Toxins (Basel) ; 7(3): 846-58, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25781653

RESUMO

Amyotrophic lateral sclerosis (ALS) is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM), including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA), also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS) and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p.) with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.


Assuntos
Terapia por Acupuntura , Esclerose Lateral Amiotrófica/tratamento farmacológico , Venenos de Abelha/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Animais , Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Transdução de Sinais , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA