Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 176: 113464, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35231783

RESUMO

Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Petróleo/metabolismo , Água do Mar/química , Poluentes Químicos da Água/análise
2.
Appl Environ Microbiol ; 88(5): e0215121, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020455

RESUMO

The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1,500 mL) microcosms without nutrient addition using a low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved in the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic-based metagenome-assembled genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed that dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating that the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. IMPORTANCE In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days), whereas exerting insignificant effects in the late stage (50 days), from both substance removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation and clarified their degradation and antioxidation mechanisms. These findings help us to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Metagenoma , Metagenômica , Petróleo/metabolismo , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar/química , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 345: 126468, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864175

RESUMO

Chemical dispersants have been widely applied to tackle oil spills, but their effects on oil biodegradation in global aquatic systems with different salinities are not well understood. Here, both experiments and advanced machine learning-aided causal inference analysis were applied to evaluate related processes. A halotolerant oil-degrading and biosurfactant-producing species was selected and characterized within the salinity of 0-70 g/L NaCl. Notably, dispersant addition can relieve the biodegradation barriers caused by high salinities. To navigate the causal relationships behind the experimental data, a structural causal model to quantitatively estimate the strength of causal links among salinity, dispersant addition, cell abundance, biosurfactant productivity and oil biodegradation was built. The estimated causal effects were integrated into a weighted directed acyclic graph, which showed that overall positive effects of dispersant addition on oil biodegradation was mainly through the enrichment of cell abundance. These findings can benefit decision-making prior dispersant application under different saline environments.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Lipídeos , Aprendizado de Máquina , Salinidade , Tensoativos , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 416: 126122, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492916

RESUMO

Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and commercial use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used commercial oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for commercial development.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Petróleo/toxicidade , Poluição por Petróleo/análise , Tensoativos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 727: 138723, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32334234

RESUMO

Salinity variability strongly affects the behaviors of oil degrading bacteria for spilled oil biodegradation in the marine environment. However, limited studies explored the strategies of microbes on salinity-mediated crude oil biodegradation. In this study, a halotolerant bio-emulsifier producer, Exiguobacterium sp. N41P, was examined as a model strain for Alaska North Slope (ANS) crude oil (0.5%, v/v) biodegradation. Results indicated that Exiguobacterium sp. N41P could tolerant a wide range of salinity (0-120 g/L NaCl) and achieve the highest degradation efficiency under the salinity of 15 g/L NaCl due to the highest biofilm formation ability. Moreover, increased salinity induced decreased cell surface hydrophobicity and a migration of microbial growth from oil phase to aqueous phase, leading to limited bio-emulsifier productivity and depressed degradation of insoluble long-chain n-alkanes while enhancing the degradation of relative soluble naphthalene. Research findings illustrated the microbial eco-physiological mechanism for spilled oil biodegradation under diverse salinities and advanced the understanding of sophisticated marine crude oil biodegradation process.


Assuntos
Poluição por Petróleo , Petróleo , Alaska , Biodegradação Ambiental , Salinidade
6.
Bioresour Technol ; 232: 263-269, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28236759

RESUMO

Rhodococcus erythropolis M-25, one of the representative biosurfactant producers, performed effectively during the biodegradation of four crude oil. The microbial degradation efficiency is positively relevant to the API of the crude oil. The chemical dispersant Corexit 9500A did not enhance the biodegradation of the petroleum hydrocarbons during the experimental period. 70.7% of the N-4 oil was degraded after 30days, while in the Corexit 9500A plus sample the biodegradation removal was 42.8%. The Corexit-derived compounds were metabolized by M-25 at the same time of the petroleum hydrocarbons biodegrading. Neither biodegradation nor chemical dispersion process has almost no effect on the biomarker (m/z=231). The saturated methyl-branched fatty acids increased from 37.3%, to 49.4%, when M-25 was exposed with the N-4 crude oil. Similarly, the saturated methyl-branched fatty acids in the membrane of N3-2P increased from 20.25% to 44.1%, when exposed it with the N-4 crude oil.


Assuntos
Biodegradação Ambiental , Poluição por Petróleo , Petróleo/metabolismo , Rhodococcus/metabolismo , Tensoativos/metabolismo , Hidrocarbonetos/metabolismo , Lipídeos/química
7.
Environ Monit Assess ; 187(5): 284, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25903403

RESUMO

From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.


Assuntos
Bactérias/classificação , Água do Mar/microbiologia , Tensoativos/metabolismo , Bacillus , Bactérias/metabolismo , Biodegradação Ambiental , Canadá , Monitoramento Ambiental , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás , Petróleo/análise , Petróleo/metabolismo , Pseudomonas , Microbiologia do Solo , Tensoativos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
8.
Mar Pollut Bull ; 86(1-2): 402-410, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25034191

RESUMO

An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Petróleo/microbiologia , Água do Mar/microbiologia , Tensoativos/metabolismo , Alcanos , Oceano Atlântico , Bactérias/isolamento & purificação , Canadá , Temperatura Baixa , Gasolina , Água do Mar/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA