Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 7417561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205589

RESUMO

Both c-Jun N-terminal kinase (JNK) and reactive oxygen species (ROS) play important roles in myocardial ischemia/reperfusion (I/R) injury. Our previous studies suggest that N-n-butyl haloperidol iodide (F2) exerts cardioprotection by reducing ROS production and JNK activation caused by I/R. In this study, we hypothesized that there is a JNK/Sab/Src/ROS pathway in the mitochondria in H9c2 cells following hypoxia/reoxygenation (H/R) that induces oxidative stress in the mitochondria and that F2 exerts mitochondrial protective effects during H/R injury by modulating this pathway. The results showed that H/R induced higher-level ROS in the cytoplasm on the one hand and JNK activation and translocation to the mitochondria by colocalization with Sab on the other. Moreover, H/R resulted in mitochondrial Src dephosphorylation, and subsequently, oxidative stress evidenced by the increase in ROS generation and oxidized cardiolipin in the mitochondrial membranes and by the decrease in mitochondrial superoxide dismutase activity and membrane potential. Furthermore, treatment with a JNK inhibitor or Sab small interfering RNA inhibited the mitochondrial translocation of p-JNK, decreased colocalization of p-JNK and Sab on the mitochondria, and reduced Src dephosphorylation and mitochondrial oxidative stress during H/R. In addition, Src dephosphorylation by inhibitor PP2 increased mitochondrial ROS production. F2, like inhibitors of the JNK/Sab/Src/ROS pathway, downregulated the H/R-induced mitochondrial translocation of p-JNK and the colocalization of p-JNK and Sab on the mitochondria, increased Src phosphorylation, and alleviated the above-mentioned mitochondrial oxidative stress. In conclusion, F2 could ameliorate H/R-associated oxidative stress in mitochondria in H9c2 cells through the mitochondrial JNK/Sab/Src/ROS pathway.


Assuntos
Haloperidol/análogos & derivados , Hipóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Haloperidol/farmacologia , Oxigenoterapia Hiperbárica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Substâncias Protetoras/farmacologia , Ratos , Quinases da Família src/metabolismo
2.
J Ethnopharmacol ; 198: 291-301, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28088494

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Hibiscus rosa-sinensis L. (HRS), a folk medicine named Zhujin in China, possess anti-tumor, antioxidant, antibacterial, low density lipoprotein oxidation prevention and macrophage death prevention effects. The leaves and red flowers of HRS have been traditionally used to treat with furuncle and ulceration. AIM OF THE STUDY: To investigate the efficacy and possible mechanism of the N-butyl alcohol extract of HRS (NHRS) red flowers in wound healing by analyzing the collagen fiber deposition, angiogenic activity and macrophages action of the NHRS. MATERIALS AND METHODS: In an excisional wound healing model in rats, different concentrations of NHRS, or recombinant bovine basic fibroblast growth factor (rbFGF), were respectively applied twice daily for 9 days. Histopathology was assessed on day 9 via hematoxylin and eosin (HE) and Masson's trichrome (MT) staining, and immunohistochemistry for vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1) and CD68. Immunomodulation by NHRS was evaluated by a carbon clearance test in mice. RESULTS: Wound healing post-surgery was greater in the rbFGF-control, NHRS-M and MHRS-H groups than in the model and 5% dimethylsulfoxide (DMSO)-control groups after the third day. By the sixth day the wound contraction of NHRS-M and MHRS-H groups was much higher than the rbFGF-control group. HE and MT staining revealed that epithelialization, fibroblast distribution, collagen deposition of NHRS-M- and NHRS-H-control groups were significantly higher than the model group. Moreover, immunohistochemistry showed more intense staining of VEGF, TGF-ß1 and CD68 in the rbFGF- and NHRS-control groups, compared to that in model and 5% DMSO-control groups. The clearance and phagocytic indices of NHRS-M- and NHRS-H-control groups were significantly higher than that of the carboxyl methyl cellulose (CMC) group in mice. CONCLUSION: NHRS accelerates wound repair via enhancing the macrophages activity, accelerating angiogenesis and collagen fiber deposition response mediated by VEGF and TGF-ß1.


Assuntos
Hibiscus/química , Neovascularização Fisiológica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , 1-Butanol/química , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Bovinos , Colágeno/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/farmacologia , Flores , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 301(4): H1588-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742996

RESUMO

The histidine-rich calcium binding protein (HRC) Ser96Ala polymorphism was shown to correlate with ventricular arrhythmias and sudden death only in dilated cardiomyopathy patients but not in healthy human carriers. In the present study, we assessed the molecular and cellular mechanisms underlying human arrhythmias by adenoviral expression of the human wild-type (HRC(WT)) or mutant HRC (HRC(S96A)) in adult rat ventricular cardiomyocytes. Total HRC protein was increased by ∼50% in both HRC(WT)- and HRC(S96A)-infected cells. The HRC(S96A) mutant exacerbated the inhibitory effects of HRC(WT) on the amplitude of Ca(2+) transients, prolongation of Ca(2+) decay time, and caffeine-induced sarcoplasmic reticulum Ca(2+) release. Consistent with these findings, HRC(S96A) reduced maximal sarcoplasmic reticulum calcium uptake rate to a higher extent than HRC(WT). Furthermore, the frequency of spontaneous Ca(2+) sparks, which was reduced by HRC(WT), was increased by mutant HRC(S96A) under resting conditions although there were no spontaneous Ca(2+) waves under stress conditions. However, expression of the HRC(S96A) genetic variant in cardiomyocytes from a rat model of postmyocardial infarction heart failure induced dramatic disturbances of rhythmic Ca(2+) transients. These findings indicate that the HRC Ser96Ala variant increases the propensity of arrhythmogenic Ca(2+) waves in the stressed failing heart, suggesting a link between this genetic variant and life-threatening ventricular arrhythmias in human carriers.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Proteínas de Ligação ao Cálcio/genética , Catecolaminas , Insuficiência Cardíaca/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Adenoviridae/genética , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/genética , Western Blotting , Cálcio/metabolismo , Cálcio/fisiologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , DNA Complementar/biossíntese , DNA Complementar/genética , Eletrocardiografia , Expressão Gênica , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Imunoprecipitação , Masculino , Mutação Puntual/genética , Mutação Puntual/fisiologia , Polimorfismo Genético/genética , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA