Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242263

RESUMO

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Assuntos
Carpas , Ferroptose , Bifenil Polibromatos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor 4 Toll-Like/genética , Carpas/metabolismo , Brânquias , Polifenóis/farmacologia , Polifenóis/metabolismo , Transdução de Sinais , Proteínas de Peixes , Inflamação/induzido quimicamente , Inflamação/veterinária , Inflamação/metabolismo , Apoptose , Chá/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA