RESUMO
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.
Assuntos
Síndrome de Angelman , Canais Iônicos , Ácido Linoleico , Animais , Feminino , Humanos , Masculino , Camundongos , Alelos , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Modelos Animais de Doenças , Deficiência Intelectual , Canais Iônicos/genética , Ácido Linoleico/farmacologiaRESUMO
Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channel contributes to neurogenic inflammation and pain hypersensitivity, in part because of its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, and behavioral, biochemical, and functional analyses in Caenorhabditis elegans As capsaicin elicits heat and pain sensations in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo.
Assuntos
Caenorhabditis elegans/fisiologia , Metabolismo dos Lipídeos , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Canais de Cátion TRPV/fisiologia , Animais , Comportamento Animal , Proteínas de Caenorhabditis elegans/biossíntese , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Dieta , Suplementos Nutricionais , Células HEK293 , Humanos , Neurônios/metabolismo , Fosfatidilinositóis/farmacologia , Canais de Cátion TRPV/genéticaRESUMO
Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain.