Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36748542

RESUMO

An actinobacterial strain, designated A5X3R13T, was isolated from a compost soil suspension supplemented with extracellular material from a Micrococcus luteus-culture supernatant. The strain was cultured on tenfold-diluted reasoner's 2A agar. The cells were ovoid-to-rod shaped, non-motile, Gram-stain-positive, oxidase-negative, catalase-positive and had a width of 0.5 µm and a length of 0.8-1.2 µm. The results of both 16S rRNA-based phylogenetic and whole-genome analyses indicate that A5X3R13T forms a distinct lineage within the family Nocardioidaceae (order Propionibacteriales). On the basis of the 16S rRNA gene sequence, A5X3R13T was closely related to Aeromicrobium terrae CC-CFT486T (96.2 %), Nocardioides iriomotensis IR27-S3T (96.2 %), Nocardioides guangzhouensis 130T (95.6 %), Marmoricola caldifontis YIM 730233T (95.5 %), Aeromicrobium alkaliterrae KSL-107T (95.4 %), Aeromicrobium choanae 9H-4T (95.4 %), Aeromicrobium panaciterrae Gsoil 161T (95.3 %), and Nocardioides jensenii NBRC 14755T (95.2 %). The genome had a length of 4 915 757 bp, and its DNA G+C content was 68.5 mol %. The main fatty acids were 10-methyl C17 : 0, C16 : 0, C15 : 0, C18 : 0, C17 : 0 and iso-C16 : 0. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. MK-9(H4) was the predominant respiratory quinone. The peptidoglycan type was A3γ (A41.1) and contained alanine, glycine, glutamic acid and ll-diaminopimelic acid in a molar ratio of 1.2 : 0.9 : 1.0 : 0.8. On the basis of the results of the phylogenetic and phenotypic analyses and comparisons with other members of the family Nocardioidaceae, strain A5X3R13T is proposed to represent a novel species within a novel genus, for which the name Solicola gregarius gen. nov., sp. nov. is proposed. The type strain is A5X3R13T (=DSM 112953T=NCCB 100840T).


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Micrococcus luteus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Microbiologia do Solo
2.
J Hazard Mater ; 443(Pt A): 130199, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279651

RESUMO

During production of γ-hexachlorocyclohexane (γ-HCH), thousands of tons of other isomers were synthesized as byproducts, and after dumping represent sources of contamination for the environment. Several microbes have the potential for aerobic and anaerobic degradation of HCHs, and zero-valent iron is an effective remediation agent for abiotic dechlorination of HCHs, whereas the combination of the processes has not yet been explored. In this study, a sequence of anoxic/oxic chemico-biological treatments for the degradation of HCHs in a real extremely contaminated soil (10-30 g/kg) was applied. Approximately 1500 kg of the soil was employed, and various combinations of reducing and oxygen-releasing chemicals were used for setting up the aerobic and anaerobic phases. The best results were obtained with mZVI/nZVI, grass cuttings, and oxygen-releasing compounds. In this case, 80 % removal of HCHs was achieved in 129 days, and 98 % degradation was achieved after 1106 days. The analysis of HCHs and their transformation products proved active degradation when slight accumulation of the transformation product during the anaerobic phase was followed by aerobic degradation. The results document that switching between aerobic and anaerobic phases, together with the addition of grass, also created suitable conditions for the biodegradation of HCHs and monochlorobenzene/benzene by microbes.


Assuntos
Hexaclorocicloexano , Poluentes do Solo , Hexaclorocicloexano/química , Descontaminação , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Solo/química , Oxigênio
3.
Bioresour Technol ; 341: 125925, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34614558

RESUMO

The present study was focused on vermicomposting of spent coffee grounds (SCG) and its mixtures with straw pellets. The process was evaluated in terms of biological and physico-chemical properties. The greatest number and biomass of earthworms was found in the treatment with 25% vol. SCG + 75% vol. straw pellets. In this treatment, the upper youngest layer exhibited 1.6-fold and 4.5-fold greater earthworm number and biomass, respectively, than the bottom oldest layer. Earthworm weight decreased in direct proportion to the layer age. The oldest treatment layer was characterized by lesser contents of fungi and six hydrolytic enzymes, compared to the younger layers. Further, the oldest treatment layer had suitable agrochemical properties. Earthworms were able to substantially reduce the caffeine stimulant content, which is considered the most representative pharmaceutically active compound.


Assuntos
Café , Compostagem
4.
mSystems ; 6(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436515

RESUMO

Forests accumulate and store large amounts of carbon (C), and a substantial fraction of this stock is contained in deadwood. This transient pool is subject to decomposition by deadwood-associated organisms, and in this process it contributes to CO2 emissions. Although fungi and bacteria are known to colonize deadwood, little is known about the microbial processes that mediate carbon and nitrogen (N) cycling in deadwood. In this study, using a combination of metagenomics, metatranscriptomics, and nutrient flux measurements, we demonstrate that the decomposition of deadwood reflects the complementary roles played by fungi and bacteria. Fungi were found to dominate the decomposition of deadwood and particularly its recalcitrant fractions, while several bacterial taxa participate in N accumulation in deadwood through N fixation, being dependent on fungal activity with respect to deadwood colonization and C supply. Conversely, bacterial N fixation helps to decrease the constraints of deadwood decomposition for fungi. Both the CO2 efflux and N accumulation that are a result of a joint action of deadwood bacteria and fungi may be significant for nutrient cycling at ecosystem levels. Especially in boreal forests with low N stocks, deadwood retention may help to improve the nutritional status and fertility of soils.IMPORTANCE Wood represents a globally important stock of C, and its mineralization importantly contributes to the global C cycle. Microorganisms play a key role in deadwood decomposition, since they possess enzymatic tools for the degradation of recalcitrant plant polymers. The present paradigm is that fungi accomplish degradation while commensalist bacteria exploit the products of fungal extracellular enzymatic cleavage, but this assumption was never backed by the analysis of microbial roles in deadwood. This study clearly identifies the roles of fungi and bacteria in the microbiome and demonstrates the importance of bacteria and their N fixation for the nutrient balance in deadwood as well as fluxes at the ecosystem level. Deadwood decomposition is shown as a process where fungi and bacteria play defined, complementary roles.

5.
Chemosphere ; 217: 534-541, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445398

RESUMO

Personal care product consumption has increased in the last decades. A typical representative ingredient, i.e., triclosan, was identified in the scientific literature as an endocrine disruptor, and its use is restricted in several applications. Oral hygiene formulations contain various compounds, including synthetic phenol derivatives, quaternary ammonium compounds (QACs), various amides and amines, or natural essential oils containing terpenes. The aim of this paper was to explore possible endocrine-disrupting effects of these most-used compounds. For this purpose, two different assays based on recombinant yeast (BMAEREluc/ERα; BMAEREluc/AR) and human cell lines (T47D; AIZ-AR) were employed to investigate the agonistic and antagonistic properties of these compounds on human estrogen and androgen receptors. The results showed that none of the compounds were indicated as agonists of the steroid receptors. However, octenidine (OCT, QAC-like) and hexadecylpyridinium (HDP, QAC) were able to completely inhibit both androgenic (IC50 OCT = 0.84 µM; IC50 HDP = 1.66 µM) and estrogenic (IC50 OCT = 0.50 µM; IC50 HDP = 1.64 µM) signaling pathways in a dose-dependent manner. Additionally, chlorhexidine was found to inhibit the 17ß-estradiol response, with a similar IC50 (2.9 µM). In contrast, the natural terpenes thymol and menthol were found to be competitive antagonists of the receptors; however, their IC50 values were higher (by orders of magnitude). We tried to estimate the risk associated with the presence of these compounds in environmental matrices by calculating hazard quotients (HQs), and the calculated HQs were found to be close to or greater than 1 only when predicted environmental concentrations were used for surface waters.


Assuntos
Antibacterianos/uso terapêutico , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Antibacterianos/farmacologia , Humanos
6.
Environ Sci Technol ; 46(24): 13377-85, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23150991

RESUMO

The white rot fungus Pleurotus ostreatus is able to completely remove the synthetic hormone 17α-ethinylestradiol (EE2, 200 µg in 20 mL) from a liquid complex or mineral medium in 3 or 14 days, respectively. Its efficiency has also been documented in the removal of estrogenic activity that correlated with the EE2 degradation. A set of in vitro experiments using various cellular and enzyme fractions has been performed and the results showed that EE2 was degraded by isolated laccase (about 90% within 24 h). The degradation was also tested with concentrated extracellular liquid where degradation reached 50% mainly due to the laccase activity; however, after a supplementation with H2O2 and Mn²âº, residual manganese-dependent peroxidase activities (40 times lower than Lac) raised the degradation to 100%. Moreover, the intracellular fraction and also laccase-like activity associated with fungal mycelium were found to be efficient in the degradation too. Isolated microsomal proteins appeared to also be involved in the process. The degradation was completely suppressed in the presence of cytochrome P-450 inhibitors, piperonylbutoxide and carbon monoxide, indicating a role of this monooxygenase in the degradation process. Attention was also paid to monitoring of changes in the estrogenic activity during these particular in vitro experiments when mainly degradations related to ligninolytic enzymes were found to decrease the estrogenic activity with EE2 removal proportionally. Several novel metabolites of EE2 were detected using different chromatographic method with mass spectrometric techniques (LC-MS, GC-MS) including also [¹³C]-labeled substrates. The results document the involvement of various different simultaneous mechanisms in the EE2 degradation by P. ostreatus by both the ligninolytic system and the eukaryotic machinery of cytochromes P-450.


Assuntos
Etinilestradiol/isolamento & purificação , Espaço Extracelular/metabolismo , Espaço Intracelular/metabolismo , Pleurotus/metabolismo , Biodegradação Ambiental , Meios de Cultura , Etinilestradiol/química , Lignina/metabolismo , Metaboloma , Micélio/metabolismo
7.
FEMS Microbiol Ecol ; 78(1): 137-49, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726245

RESUMO

To investigate the link between the functionality and the diversity of microbial communities under strong selective pressure from pollutants, two types of mesocosms that simulate natural attenuation and phytoremediation were generated using soil from a site highly contaminated with jet fuel and under air-sparging treatment. An increase in the petroleum hydrocarbon concentration from 4900 to 18,500 mg kg(-1) dw soil simulated a pollutant rebound (postremediation pollutant reversal due to residual contamination). Analysis of soil bacterial communities by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments showed stronger changes and selection for a phylogenetically diverse microbial population in the mesocosms with pollutant-tolerant willow trees. Enumeration of the main subfamilies of catabolic genes characteristic to the site detected a rapid increase in the degradation potential of both systems. A marked increase in the abundance of genes encoding extradiol dioxygenases with a high affinity towards various catecholic substrates was found in the planted mesocosms. The observed adaptive response to the simulated pollutant rebound, characterized by increased catabolic gene abundance, but with different changes in the microbial structure, can be explained by functional redundancy in biodegrading microbial communities.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Adaptação Fisiológica , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Petróleo/metabolismo , Petróleo/toxicidade , Filogenia , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA