Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884919

RESUMO

Metallothioneins' (MTs) biological function has been a matter of debate since their discovery. The importance to categorize these cysteine-rich proteins with high coordinating capacity into a specific group led to numerous classification proposals. We proposed a classification based on their metal-binding abilities, gradually sorting them from those with high selectivity towards Zn/Cd to those that are Cu-specific. However, the study of the NpeMT1 and NpeMT2isoforms of Nerita peloronta, has put a new perspective on this classification. N. peloronta has been chosen as a representative mollusk to elucidate the metal-binding abilities of Neritimorpha MTs, an order without any MTs characterized recently. Both isoforms have been recombinantly synthesized in cultures supplemented with ZnII, CdII, or CuII, and the purified metal-MT complexes have been thoroughly characterized by spectroscopic and spectrometric methods, leading to results that confirmed that Neritimorpha share Cd-selective MTs with Caenogastropoda and Heterobranchia, solving a so far unresolved question. NpeMTs show high coordinating preferences towards divalent metal ions, although one of them (NpeMT1) shares features with the so-called genuine Zn-thioneins, while the other (NpeMT2) exhibits a higher preference for Cd. The dissimilarities between the two isoforms let a window open to a new proposal of chemical MT classification.


Assuntos
Cádmio/metabolismo , Gastrópodes/metabolismo , Metalotioneína/química , Metalotioneína/classificação , Zinco/metabolismo , Animais , Dicroísmo Circular , Cobre/metabolismo , Escherichia coli/genética , Gastrópodes/química , Metalotioneína/genética , Metalotioneína/metabolismo , Domínios Proteicos , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
2.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374169

RESUMO

Metallothioneins (MTs) are a diverse group of proteins responsible for the control of metal homeostasis and detoxification. To investigate the impact that environmental conditions might have had on the metal-binding abilities of these proteins, we have characterized the MTs from the apple snail Pomacea bridgesii, a gastropod species belonging to the class of Caenogastropoda with an amphibious lifestyle facing diverse situations of metal bioavailability. P. bridgesii has two structurally divergent MTs, named PbrMT1 and PbrMT2, that are longer than other gastropod MTs due to the presence of extra sequence motifs and metal-binding domains. We have characterized the Zn(II), Cd(II), and Cu(I) binding abilities of these two MTs after their heterologous expression in E. coli. Our results have revealed that despite their structural differences, both MTs share an unspecific metal-binding character, and a great ability to cope with elevated amounts of different metal ions. Our analyses have also revealed slight divergences in their metal-binding features: PbrMT1 shows a more pronounced Zn(II)-thionein character than PbrMT2, while the latter has a stronger Cu(I)-thionein character. The characterization of these two unconventional PbrMTs supports the loss of the metal-binding specificity during the evolution of the MTs of the Ampullariid family, and further suggests an evolutionary link of this loss with the adaptation of these gastropod lineages to metal-poor freshwater habitats.


Assuntos
Cádmio/química , Cobre/química , Metalotioneína , Caramujos , Zinco/química , Animais , Metalotioneína/química , Metalotioneína/genética , Caramujos/química , Caramujos/genética
3.
Clin Nutr ; 35(6): 1333-1339, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26948401

RESUMO

BACKGROUND & AIMS: IBD is a chronic disorder of the gastrointestinal tract characterized by mucosal inflammation and epithelial damage. Biologic therapy has significantly improved the course of the disease but there are still a high percentage of patients that do not respond to current therapies. We aim to determine the effects of the flesh ethanolic extract of Hylocereus polyrhizus (EH) in a mice model of colitis induced by TNBS. METHODS: Balb/c mice received TNBS (175 mg/kg, 100 µl, i.r.) and six and thirty hours later were administered with EH (1 g/kg, i.p.). Mice were weighted daily and after sacrificing (2 and 4 days after TNBS) we analyzed mucosal histology, myeloperoxidase activity (MPO), the expression of pro-inflammatory molecules (qPCR) and NF-κB and Iκß-α protein levels. The chemical characterization of the EH was determined by LC-MS/MS. RESULTS: The administration of EH to TNBS-treated mice prevented (P < 0.05) the loss of body weight and significantly reduced in the colon: a) histological damage score, b) MPO enzymatic activity c) the expression of pro-inflammatory molecules and d) Iκß-α degradation and nuclear NF-κß protein levels. The LC-MS analysis detected metabolites such as polyphenols and fatty acids. CONCLUSION: Systemic administration of the ethanolic extract of H. polyrhizus exerts an anti-inflammatory effect and prevents murine colitis induced by TNBS.


Assuntos
Anti-Inflamatórios , Cactaceae/química , Colite/prevenção & controle , Frutas/química , Extratos Vegetais/uso terapêutico , Animais , Colite/induzido quimicamente , Colite/patologia , Colo/patologia , Citocinas/genética , Modelos Animais de Doenças , Etanol , Flavonoides/análise , Expressão Gênica/efeitos dos fármacos , Síndrome do Intestino Irritável/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Extratos Vegetais/química , Polifenóis/análise , Ácido Trinitrobenzenossulfônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA