Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Immunol ; 14: 1222173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818366

RESUMO

This work studied the potential of a combination of pungent spices (capsicum, black pepper, ginger, and cinnamaldehyde) to be used as a supplement in diets of gilthead seabream (Sparus aurata; 44.1 ± 4.2 g). During 90 days, fish were fed three experimental diets with low inclusion of fish oil and containing poultry fat as the main source of lipids, supplemented with graded levels of the tested supplement: 0 (control), 0.1 (SPICY0.1%), and 0.15% (SPICY0.15%). As a result, the pungent spices enhanced the growth performance, the activity of the bile-salt-activated lipase in the intestine, and decreased fat deposit levels within enterocytes. The SPICY0.1% diet reduced the feed conversion ratio and the perivisceral fat index and lipid deposits in the liver. Moreover, the ratio of docosahexaenoic acid/eicosapentaenoic acid in fillet increased in fish fed the SPICY0.1% diet, while the hepatic levels of docosahexaenoic acid and total n-3 polyunsaturated fatty acids increased in fish fed the SPICY0.15% diet. Furthermore, there was an effect on the expression of some biomarkers related to lipid metabolism in 2-h postprandial fish (fasn, elovl6, scd1b, cyp7a1, lpl, and pparß), and in 48 h fasted-fish fed with the SPICY0.1% diet, a regulation of the intestinal immune response was indicated. However, no significant differences were found in lipid apparent digestibility and proximate macronutrient composition. The spices did not affect biomarkers of hepatic or oxidative stress. No differences in microbial diversity were found, except for an increase in Simpson's Index in the posterior intestine of fish fed the SPICY0.1% diet, reflected in the increased relative abundance of the phylum Chloroflexi and lower relative abundances of the genera Campylobacter, Corynebacterium, and Peptoniphilus. In conclusion, the supplementation of gilthead seabream diets with pungent spices at an inclusion of 0.1% was beneficial to enhance growth performance and feed utilization; reduce fat accumulation in the visceral cavity, liver, and intestine; and improve the fish health status and condition. Results suggest that the tested supplement can be used as part of a nutritional strategy to promote a more judicious use of fish oil in fish diets due to its decreasing availability and rising costs.


Assuntos
Óleos de Peixe , Dourada , Animais , Dourada/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos/metabolismo , Suplementos Nutricionais , Dieta , Ácidos Graxos Insaturados/metabolismo , Biomarcadores/metabolismo
2.
Animals (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919381

RESUMO

AAs have become interesting feed ingredients to be used in functional fish feeds as not only are they protein building blocks, but they also participate in several other key metabolic processes. In the present study, a comprehensive analysis of transcriptomics, hematology, and humoral immune parameters (plasma and skin mucus) were measured twice over the course of the feeding trial (four weeks). Plasma antiprotease activity increased in fish fed Thr compared to those fed the CTRL and Tau treatments, regardless of sampling time. The bactericidal activity in skin mucus decreased in fish fed Tau and His treatments compared to those fed the CTRL diet after two weeks. The membrane IgT (mIgT) was upregulated in fish fed Tau after four weeks, while C-type lectin domain family domain 10 member (clec10a) was downregulated in fish fed Thr after two weeks of feeding. By comparing the molecular signatures of head-kidney by means of a PLS-DA, it is possible to visualize that the main difference is between the two sampling points, regardless of diet. Altogether, these results suggest that dietary supplementation with these AAs at the tested levels causes mild immune-modulation effects in gilthead seabream, which should be further studied under disease challenge conditions.

3.
Sci Rep ; 9(1): 16134, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695116

RESUMO

European seabass (Dicentrarchus labrax) production is often hampered by bacterial infections such as photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp). Since diet can impact fish immunity, this work investigated the effect of dietary supplementation of 5% Gracilaria sp. aqueous extract (GRA) on seabass antioxidant capacity and resistance against Phdp. After infection, mortality was delayed in fish fed GRA, which also revealed increased lysozyme activity levels, as well as decreased lipid peroxidation, suggesting higher antioxidant capacity than in fish fed a control diet. Dietary GRA induced a down-regulation of hepatic stress-responsive heat shock proteins (grp-78, grp-170, grp-94, grp-75), while bacterial infection caused a down-regulation in antioxidant genes (prdx4 and mn-sod). Diet and infection interaction down-regulated the transcription levels of genes associated with oxidative stress response (prdx5 and gpx4) in liver. In head-kidney, GRA led to an up-regulation of genes associated with inflammation (il34, ccr9, cd33) and a down-regulation of genes related to cytokine signalling (mif, il1b, defb, a2m, myd88). Additionally, bacterial infection up-regulated immunoglobulins production (IgMs) and down-regulated the transcription of the antimicrobial peptide leap2 in head kidney. Overall, we found that GRA supplementation modulated seabass resistance to Phdp infection.


Assuntos
Ração Animal , Bass/fisiologia , Suplementos Nutricionais , Doenças dos Peixes/prevenção & controle , Gracilaria , Infecções por Bactérias Gram-Negativas/veterinária , Photobacterium , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Aquicultura , Bass/sangue , Bass/imunologia , Glicemia/análise , Citocinas/biossíntese , Citocinas/genética , Resistência à Doença , Doenças dos Peixes/dietoterapia , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/dietoterapia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Rim Cefálico/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Imunoglobulina M/biossíntese , Peroxidação de Lipídeos , Fígado/metabolismo , Muramidase/sangue , Triglicerídeos/sangue
4.
Fish Shellfish Immunol ; 93: 240-250, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310850

RESUMO

European aquaculture is an industry with a high sustainability profile contributing to the supply of safe seafood. However, several diseases can affect farmed fish and it is imperative to find alternatives for chemotherapeutic treatments when disease outbreaks occur. Maintenance of health through nutrition is well-establish in modern animal farming, and amino acids (AA) are promising candidates as functional additives to improve fish health. Therefore, the goal of this research is to provide a better understanding of the influence of tryptophan supplementation on nutritional condition and immune mechanisms in fish. Triplicate groups of fish (13.3 ±â€¯0.3g) previously fed with a fishmeal-based diet were either fed a control diet with an extreme formulation (0% fishmeal) but meeting the AA requirements (CTRL), or the SUP diet, formulated as the CTRL with an increase in tryptophan (TRP) content. After 2 and 13 weeks of feeding, head-kidney (HK), liver (L) and white skeletal muscle (WSM) were collected for gene expression, whereas plasma was suited for humoral immune parameters. A holistic approach using transcriptomic, humoral and zootechnical parameters was undertaken. The expression of 29-31 genes for WSM, L or HK confirms an effect due to the treatment across time. A two-way ANOVA analysis revealed that 15-24 genes varied significantly depending on the tissue, and the multivariate analysis by means of PLS-DA explained (R2) and predicted (Q2) with four components up to 93% and 78% of total variance, respectively. Component 1 (R2 = 50.06%) represented the time effects, whereas components 2 (24.36%) and 3 (13.89%) grouped fish on the basis of dietary treatment, at early sampling. The HK results in particular suggest that fish fed SUP diet displayed an immunostimulated state at 2 weeks. No major differences were observed in plasma humoral parameters, despite an increase in antiprotease and peroxidase activities after 13 weeks regardless of dietary treatment. These results suggest that tryptophan supplementation may improve the seabream immune status after 2 weeks. Hence, the use of functional feeds is especially relevant during a short-term feeding period before a predictable stressful event or disease outbreak, considering that these putative advantageous effects seem to disappear after a 13 weeks feeding period.


Assuntos
Imunidade Inata/efeitos dos fármacos , Dourada/imunologia , Triptofano/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Distribuição Aleatória , Dourada/metabolismo , Fatores de Tempo , Triptofano/administração & dosagem
5.
PeerJ ; 5: e4001, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29226031

RESUMO

BACKGROUND: The increased demand for fish protein has led to the intensification of aquaculture practices which are hampered by nutritional and health factors affecting growth performance. To solve these problems, antibiotics have been used for many years in the prevention, control and treatment against disease as well as growth promoters to improve animal performance. Nowadays, the use of antibiotics in the European Union and other countries has been completely or partially banned as a result of the existence of antibiotic cross-resistance. Therefore, a number of alternatives, including enzymes, prebiotics, probiotics, phytonutrients and organic acids used alone or in combination have been proposed for the improvement of immunological state, growth performance and production in livestock animals. The aim of the present study was to evaluate two commercially available feed additives, one based on medium-chain fatty acids (MCFAs) from coconut oil and another with a Bacillus-based probiotic, in gilthead sea bream (GSB, Sparus aurata), a marine farmed fish of high value in the Mediterranean aquaculture. METHODS: The potential benefits of adding two commercial feed additives on fish growth performance and intestinal health were assessed in a 100-days feeding trial. The experimental diets (D2 and D3) were prepared by supplementing a basal diet (D1) with MCFAs in the form of a sodium salt of coconut fatty acid distillate (DICOSAN®; Norel, Madrid, Spain), rich on C-12, added at 0.3% (D2) or with the probiotic Bacillus amyloliquefaciens CECT 5940, added at 0.1% (D3). The study integrated data on growth performance, blood biochemistry, histology and intestinal gene expression patterns of selected markers of intestinal function and architecture. RESULTS: MCFAs in the form of a coconut oil increased feed intake, growth rates and the surface of nutrient absorption, promoting the anabolic action of the somatotropic axis. The probiotic (D3) induced anti-inflammatory and anti-oxidant effects with changes in circulating cortisol, immunoglobulin M, leukocyte respiratory burst, and mucosal expression levels of cytokines, lymphocyte markers and immunoglobulin T. DISCUSSION: MCFA supplementation showed positive effects on GSB growth and intestinal architecture acting mainly in the anterior intestine, where absorption takes place. The probiotic B. amyloliquefaciens CECT 5940 exhibited key effects in the regulation of the immune status inducing anti-inflammatory and anti-oxidant effects which can be potentially advantageous upon infection or exposure to other stressors. The potential effects of these feed additives in GSB are very promising to improve health and disease resistance in aquaculture.

6.
Microbiome ; 5(1): 164, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282153

RESUMO

BACKGROUND: The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested. RESULTS: The results showed that opposed forces were driven by dietary plant ingredients and sodium butyrate supplementation in fish diet. On the one hand, vegetable diets induced high parasite infection levels that provoked drops in growth performance, decreased intestinal microbiota diversity, induced the dominance of the Photobacterium genus, as well as altered the gut mucosal proteome suggesting detrimental effects on intestinal function. On the other hand, butyrate addition slightly decreased cumulative mortality after bacterial challenge, avoided growth retardation in parasitized fish, increased intestinal microbiota diversity with a higher representation of butyrate-producing bacteria and reversed most vegetable diet-induced changes in the gut proteome. CONCLUSIONS: This integrative work gives insights on the pleiotropic effects of a dietary additive on the restoration of intestinal homeostasis and disease resilience, using a multifaceted approach.


Assuntos
Ração Animal/análise , Ácido Butírico/administração & dosagem , Dieta Vegetariana , Doenças dos Peixes/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Dourada/microbiologia , Animais , Aquicultura , Doenças dos Peixes/tratamento farmacológico , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Myxozoa/efeitos dos fármacos , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/tratamento farmacológico , Doenças Parasitárias em Animais/prevenção & controle , Proteômica , Dourada/fisiologia
7.
Br J Nutr ; 117(3): 351-363, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28245885

RESUMO

An olive oil bioactive extract (OBE) rich in bioactive compounds like polyphenols, triterpenic acids, long-chain fatty alcohols, unsaturated hydrocarbons, tocopherols and sterols was tested (0, 0·08, 0·17, 0·42 and 0·73 % OBE) in diets fed to sea bream (Sparus aurata) (initial weight: 5·4 (sd 1·2) g) during a 90-d trial (four replicates). Fish fed diets containing 0·17 and 0·42 % OBE were 5 % heavier (61·1 (sd 1·6) and 60·3 (sd 1·1) g, respectively) than those of the control group (57·0 (sd 0·7) g), although feed conversion ratio and specific feed intake did not vary. There were no differences in lipid peroxidation (LPO) levels, catalase, glutathione reductase and glutathione S-transferase activities in the intestine and liver, although there was a tendency of lower intestinal and hepatic LPO levels in fish fed OBE diets. No differences in villus size were found among treatments, whereas goblet cell density in the control group was on average14·3 % lower than in fish fed OBE diets. The transcriptomic profiling of intestinal markers, covering different biological functions like (i) cell differentiation and proliferation, (ii) intestinal permeability, (iii) enterocyte mass and epithelial damage, (iv) IL and cytokines, (v) pathogen recognition receptors and (vi) mitochondria function, indicated that among the eighty-eight evaluated genes, twenty-nine were differentially expressed (0·17 % OBE diet), suggesting that the additive has the potential of improving the condition and defensive role of the intestine by enhancing the maturation of enterocytes, reducing oxidative stress, improving the integrity of the intestinal epithelium and enhancing the intestinal innate immune function, as gene expression data indicated.


Assuntos
Peso Corporal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Azeite de Oliva/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Dourada , Ração Animal , Animais , Antioxidantes/farmacologia , Dieta , Enterócitos/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Intestinos/citologia , Intestinos/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Olea/química , Azeite de Oliva/química , Polifenóis/farmacologia , Dourada/fisiologia , Transcriptoma
8.
PLoS One ; 11(11): e0166564, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898676

RESUMO

There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.


Assuntos
Ácido Butírico/farmacologia , Gorduras Insaturadas na Dieta/farmacologia , Óleos de Peixe/química , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Dourada/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dourada/genética , Dourada/crescimento & desenvolvimento , Dourada/fisiologia , Transcriptoma/efeitos dos fármacos
9.
Fish Shellfish Immunol ; 44(1): 117-28, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25681752

RESUMO

Gilthead sea bream juveniles were fed different doses (0, 50, 100, 200, 300 ppm) of NEXT ENHANCE®150 (NE) for 9 weeks. Feed gain ratio (FGR) was improved by a 10% with all the doses, but feed intake decreased in a dose dependent manner. The optimum inclusion level to achieve maximum growth was set at 100 ppm. The hepatosomatic index did not vary and only at the highest dose, viscerosomatic and splenosomatic indexes were significantly decreased. No significant changes were found in haematological parameters, plasma biochemistry, total antioxidant capacity and respiratory burst. In a second trial, NE was given at 100 ppm alone (D1) or in combination with the prebiotic PREVIDA® (0.5%) (PRE) (D2) for 17 weeks. There were no differences in the growth rates, and FGR was equally improved for D1 and D2. No significant changes in haematology and plasma antioxidant capacity were detected. The histological examination of the liver and the intestine showed no outstanding differences in the liver, but the number of mucosal foldings appeared to be higher in D1 and D2 vs CTRL diet and the density of enterocytes and goblet cells also appeared higher, particularly in the anterior intestine. A 87-gene PCR-array was constructed based on our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) and applied to samples of anterior (AI) and posterior (PI) intestine. It included 54 new gene sequences and other sequences as markers of cell differentiation and proliferation, intestinal architecture and permeability, enterocyte mass and epithelial damage, interleukins and cytokines, pattern recognition receptors (PRR), and mitochondrial function and biogenesis. More than half of the studied genes had significantly different expression between AI and PI segments. The functional significance of this differential tissue expression is discussed. The experimental diets induced significant changes in the expression of 26 genes. The intensity of these changes and the number of genes that were significantly regulated were higher at PI than at AI. At PI, both diets invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, cytokines and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for D1 and D2, except for fatty acid-binding proteins 2 and 6 and the PRR fucolectin, which were higher in D2 and D1 fed fish, respectively. Thus, NE alone or in combination with PRE seems to induce an anti-inflammatory and anti-proliferative transcriptomic profile with probable improvement in the absorptive capacity of the intestine that would explain the improved FGR.


Assuntos
Suplementos Nutricionais , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Doenças Parasitárias em Animais/imunologia , Dourada/crescimento & desenvolvimento , Dourada/genética , Ração Animal/análise , Animais , Cimenos , Dieta/veterinária , Suplementos Nutricionais/análise , Proteínas de Peixes/metabolismo , Intestinos/imunologia , Intestinos/parasitologia , Dados de Sequência Molecular , Monoterpenos/administração & dosagem , Monoterpenos/imunologia , Myxozoa/fisiologia , Especificidade de Órgãos , Doenças Parasitárias em Animais/parasitologia , Prebióticos/administração & dosagem , Dourada/imunologia , Dourada/metabolismo , Análise de Sequência de DNA/veterinária , Timol/administração & dosagem , Timol/imunologia , Transcriptoma
10.
PLoS One ; 8(6): e65457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776483

RESUMO

Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB), to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb). Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc). Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO) by vegetable oils (VO) in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Biomarcadores/metabolismo , Regulação da Expressão Gênica/fisiologia , Mucinas/genética , Dourada/metabolismo , Dourada/parasitologia , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Bases de Dados Genéticas , Óleos de Peixe , Trato Gastrointestinal/metabolismo , Brânquias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Filogenia , Óleos de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Pele/metabolismo
11.
BMC Genomics ; 13: 470, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967181

RESUMO

BACKGROUND: Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. RESULTS: Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. CONCLUSIONS: The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.


Assuntos
Mucosa Intestinal/metabolismo , Myxozoa/fisiologia , Óleos de Plantas/farmacologia , Dourada/genética , Transcriptoma/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Intestinos/parasitologia , Doenças Parasitárias em Animais/genética , Doenças Parasitárias em Animais/parasitologia , Dourada/metabolismo , Dourada/parasitologia , Regulação para Cima/efeitos dos fármacos
12.
Fish Shellfish Immunol ; 33(2): 401-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659442

RESUMO

The aim of the present work was to determine if a plant protein-based diet containing vegetable oils (VO) as the major lipid source could alter the distribution of IgM immunoreactive cells (IRCs) and the IgM expression pattern in the intestine and haematopoietic tissues of gilthead sea bream (GSB) (Sparus aurata) challenged with the myxosporean Enteromyxum leei. In a first trial (T1), GSB fed for 9 months either a fish oil (FO) diet or a blend of VO at 66% of replacement (66VO diet) was challenged by exposure to parasite-contaminated water effluent. All fish were periodically and non-lethally sampled to know their infection status. After 102 days of exposure, samples of intestine and head kidney were obtained for IgM expression and immunohistochemical detection (IHC). Additional samples of spleen were taken for IHC. Fish were categorized as control (C, not exposed), and early (E), or late (L) infected. The 66VO diet had no effect on the number of IgM-IRCs in any of the tissues or on IgM expression in C fish, whereas the infection with E. leei had a strong effect on the intestine. A combined time-diet effect was also observed, since the highest expression and IRCs values were registered in the posterior intestine (Pi) of E-66VO fish. A positive correlation was found between IgM expression and the presence of IgM-IRCs in the Pi. The effect of the time of infection was studied more in detail in a second trial (T2) in which samples of Pi were taken at 0, 24, 51, 91 and 133 days after exposure to the parasite. A significant increase of the IgM expression was detected only in parasitized fish, and very late after exposure. These results show that the duration of the exposure to the parasite is the most determinant factor for the observed intestinal IgM increased phenotype which gets magnified by the feeding of a high VO-based diet.


Assuntos
Gorduras na Dieta/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Imunoglobulina M , Myxozoa/imunologia , Doenças Parasitárias em Animais/imunologia , Dourada/imunologia , Animais , Dieta/veterinária , Óleos de Peixe/imunologia , Perfilação da Expressão Gênica , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Intestinos/citologia , Intestinos/imunologia , Rim/citologia , Rim/imunologia , Óleos de Plantas , Dourada/genética , Dourada/parasitologia , Baço/citologia , Baço/imunologia
13.
Fish Shellfish Immunol ; 31(2): 294-302, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21640832

RESUMO

The aim of this work was to underline the physiological role of the antioxidant peroxiredoxin (PRDX) family in gilthead sea bream (Sparus aurata L.), a perciform fish extensively cultured in the Mediterranean area. First, extensive BLAST searches were done on the gilthead sea bream cDNA database of the AQUAMAX European Project (www.sigenae.org/iats), and six contigs were unequivocally identified as PRDX1-6 after sequence completion by RT-PCR. The phylogenetic analysis evidenced three major clades corresponding to PRDX1-4 (true 2-Cyst PRDX subclass), PRDX5 (atypical 2-Cys PRDX subclass) and PRDX6 (1-Cys PRDX subclass) that reflected the present hierarchy of vertebrates. However, the PRDX2 branch of modern fish including gilthead sea bream was related to the monophyletic PRDX1 node rather than to PRDX2 cluster of mammals and primitive fish, which probably denotes the acquisition of novel functions through vertebrate evolution. Transcriptional studies by means of quantitative real-time PCR evidenced a ubiquitous PRDX gene expression that was tissue specific for each PRDX isoform. In a second set of transcriptional studies, liver and head kidney were chosen as target tissues in fish challenged with i) the intestinal parasite Enteromyxum leei, ii) a plant oil (VO) diet with deficiencies in essential fatty acids and iii) prolonged exposure to high-rearing densities. These studies showed that PRDX genes were highly and mostly constitutively expressed in the liver and were not affected by dietary intervention or high density. In contrast, head kidney was highly sensitive to the different experimental challenges: significantly lower values were found for PRDX5 in the three trials, for PRDX6 in parasitized and high density fish and for PRDX1 in parasitized and VO fish. PRDX2, 3 and 5 were decreased only in VO, high density and parasitized animals, respectively. These findings would highlight the role of PRDXs as integrative and highly predictive biomarkers of health and welfare in fish and gilthead sea bream in particular.


Assuntos
Proteínas de Peixes/genética , Peroxirredoxinas/genética , Dourada/genética , Estresse Fisiológico , Sequência de Aminoácidos , Animais , DNA Complementar , Dieta , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/veterinária , Dados de Sequência Molecular , Myxozoa , Peroxirredoxinas/imunologia , Peroxirredoxinas/fisiologia , Reação em Cadeia da Polimerase , Densidade Demográfica , Dourada/imunologia , Dourada/parasitologia , Dourada/fisiologia
14.
J Nutr ; 137(6): 1363-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17513392

RESUMO

To maximize growth, farmed fish are fed high-fat diets, which can lead to high tissue lipid concentrations that have an impact on quality. The intake of conjugated linoleic acid (CLA) reduces body fat in mammals and this study was undertaken to determine the effects of dietary CLA on growth, composition, and postprandial metabolic variables in sea bream. Fish were fed 3 diets containing 48 g/100 g protein and 24 g/100 g fat, including fish oil supplemented with 0 (control), 2, or 4% CLA for 12 wk. Feed intake, specific growth rate, total body fat, and circulating somatolactin concentration were lower in fish fed CLA than in controls. Feed efficiency was greater in fish fed 2% CLA than in controls. Liver triglyceride concentrations were higher in fish fed 4% CLA and muscle triglyceride concentrations were lower in fish fed both CLA diets than in controls. Hepatic fatty acyl desaturase and elongase mRNA levels in fish fed CLA were lower than in controls. Metabolic differences between controls and CLA-fed fish were observed at 6 h but not at 24 h after the last meal, including lower postprandial circulating triglyceride concentrations, higher hepatic acyl-CoA-oxidase, and lower L-3-hydroxyacyl-CoA dehydrogenase activities in CLA-fed fish than in controls. Dietary CLA did not affect enzymes involved in lipogenesis including hepatic fatty acid synthase and malic enzyme, but it decreased glucose 6-phosphate dehydrogenase activity at 24 h, but not at 6 h after feeding. The data suggest that CLA intake in sea bream has little effect on hepatic lipogenesis, channels dietary lipid from adipose tissue to the liver, and switches hepatic mitochondrial to peroxisomal beta-oxidation.


Assuntos
Composição Corporal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Triglicerídeos/metabolismo , Animais , Crescimento/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Dourada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA