Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382440

RESUMO

The current technical issues related to the conversion of algal biomass into aviation biofuel through hydrothermal liquefaction (HTL) and the upgrading of bio-oil through hydrotreatment have been reviewed and consolidated. HTL is a promising route for converting microalgae into sustainable aviation fuel (SAF). However, HTL must be followed by the hydrotreatment of bio-oil to ensure that its composition and properties are compatible with SAF standards. The fact that microalgae offer the possibility of recovering wastewater treatment resources not only makes them more attractive but also serves as an incentive for wastewater treatment, especially in countries where this service has not been universalized. The combination of SAF and wastewater treatment aligns with the Sustainable Development Goals of the United Nations, representing an advantageous opportunity for both aviation and sanitation. In this context, the utilization of HTL by-products in the concept of a biorefinery is essential for the sustainability of aviation biofuel production through this route. Another important aspect is the recovery and reuse of catalysts, which are generally heterogeneous, allowing for recycling. Additionally, discussions have focused on biomass pretreatment methods, the use of solvents and catalysts in HTL and hydrotreatment reactions, and the operational parameters of both processes. All these issues present opportunities to enhance the quantity and quality of bio-oil and aviation biofuel.


Assuntos
Microalgas , Óleos de Plantas , Polifenóis , Águas Residuárias , Biocombustíveis , Temperatura , Biomassa
2.
Environ Pollut ; 324: 121364, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36849087

RESUMO

Microalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs. For this assessment, 12 HRAPs installed outdoors were operated with 800 L of SW with different Cu concentrations (0.1-4.0 mg/L). Cu's interferences on the growth and composition of biomass and nutrient removal from SW were investigated through mass balance and experimental modelling. The results showed that the concentration of 1.0 mg Cu/L stimulated microalgae growth, and above 3.0 mg Cu/L caused inhibition accompanied by an accumulation of H2O2. Furthermore, Cu affected the contents of lipids and carotenoids observed in the biomass; the highest concentration was observed in the control (16%) and 0.5 mg Cu/L (1.6 mg/g), respectively. An innovative result was verified for nutrient removal, in which increased Cu concentration reduced the N-NH4+ removal rate. In contrast, the soluble P removal rate was enhanced by 2.0 mg Cu/L. Removal of soluble Cu in treated SW reached 91%. However, the action of microalgae in this process was not associated with assimilation but with a pH increase resulting from photosynthesis. A preliminary evaluation of economic viability showed that the commercialisation of biomass considering the concentration of carotenoids obtained in HRAPs with 0.5 mg Cu/L could be economically attractive. In conclusion, Cu affected the different parameters evaluated in this study in a complex way. This can help managers consort nutrient removal, biomass production, and resource recovery, providing information for possible industrial exploitation of the generated bioproducts.


Assuntos
Microalgas , Purificação da Água , Animais , Suínos , Eliminação de Resíduos Líquidos/métodos , Cobre , Biomassa , Lagoas , Peróxido de Hidrogênio , Águas Residuárias , Purificação da Água/métodos , Nutrientes , Nitrogênio/análise
3.
Environ Technol ; 44(9): 1334-1350, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34719354

RESUMO

Microalgae biomass contributes to effluent bioremediation. It is a concentrated source of nutrients and organic carbon, making it a potential alternative as a soil biostimulant. In this context, this study aimed to evaluate the soil application of microalgae biomass produced from the meat processing industry effluent treatment. The biomass was applied dry and as a mixture to demonstrate its potential to increase plant production and soil metabolic functions, analyzed short-term. Doses of 0.25%, 0.5%, 1%, and 2% biomass were applied in soils from (i) Horizon A: taken at a depth between 0 and 10 cm and; (ii) Horizon B: taken at a depth between 20 and 40 cm. Corn growth (Zea Mays L.), basal soil respiration, microbial biomass carbon, total organic carbon, ß-glucosidase, acid phosphatase, arylsulfatase, and urease enzymatic activity were evaluated in each sample. It is concluded that applying 2% microalgae biomass led to higher basal soil respiration, microbial biomass carbon, and ß-glucosidase, acid phosphatase, arylsulfatase enzymatic activity in both soils. On the other hand, boron may have contributed to urease activity reduction in Soil A. Although 2% biomass led to higher soils characteristics, that dose did not promote higher plant growth. Hence, considering that plant growth must be in line with changes in soil characteristics, the result that provided the higher plant shoot dry matter mass was by applying 0.55% biomass in both soils. Therefore, the application of microalgae biomass produced from a meat processing industry effluent treatment promoted a biologically active soil and boosted plant growth.


Assuntos
Microalgas , Solo , Biomassa , Urease , Glucosilceramidase , Carbono , Arilsulfatases , Monoéster Fosfórico Hidrolases , Microbiologia do Solo
4.
J Environ Manage ; 299: 113668, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492441

RESUMO

This study aimed to evaluate the simultaneous interferences of Cu and Zn found in swine wastewater (SW) in the development of microalgae considering real conditions of cultivation in high rate algal ponds (HRAPs). Ten HRAPs on a pilot scale were fed with SW with different mixtures of Cu (0.5-3.0 mg/L) and Zn (5.0-25.0 mg/L). The interferences of these metals in removing nutrients (N-NH4+ and soluble phosphorus (Ps)) from the SW were determined. In addition, this study evaluated the effects on biomass growth and biochemical composition. Chlorella sp. was dominant in all HRAPs and the condition that potentiated its growth occurred in medium containing 1.8 mg Cu/L + 15.0 mg Zn/L, while higher concentrations conferred inhibition. Only Cu compromised the removal rates of N-NH4+ while the effects of Zn were not significant. Contrary, Zn interfered with Ps removal rates, but the impact of Cu was not significant. The greatest Cu applications increased the protein levels by biomass (50.5-55.2 %). Carbohydrate accumulation was favored by conditions that inhibited the development of microalgae due to either limitation or excess of metals. Copper and Zn compromised the levels of lipids, and the control treatment had the highest content (24.5 %). The presence of Cu and Zn changed the dynamics of HRAPs regarding nutrient removal, productivity, and biochemical composition of the biomass.


Assuntos
Chlorella , Microalgas , Purificação da Água , Animais , Biomassa , Nitrogênio/análise , Nutrientes , Lagoas , Suínos , Águas Residuárias , Zinco
5.
Sci Total Environ ; 724: 138138, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268288

RESUMO

Waste, especially biomass in general, is a large reservoir of nutrients that can be recovered through different technologies and used to produce biofertilizers. In the present study, environmental impacts of the production of microalgae biomass-based phosphate biofertilizer compared to triple superphosphate through life-cycle assessment conducted in the Simapro® software were investigated. The functional unit of the analysis was 163 g of P for both fertilizers. Phosphorus was recovered from a meat processing industry effluent in a high-rate algal pond. Impacts related to the entire biofertilizer chain impacted mainly on climate changes (3.17 kg CO2eq). Microalgae biofertilizer had higher environmental impact than conventional fertilizer in all impact categories, highlighting climate change and terrestrial ecotoxicity. An ideal scenario was created considering that: all energy used comes from photovoltaic panels; in the separation step a physical method will be used, without energy expenditure (i.e. gravimetric sedimentation) and; biomass will be dried in a drying bed instead of the thermal drying. In this scenario, the impact of biofertilizer approached considerably those of triple superphosphate. When impacts of biomass cultivation and concentration stages were disregarded, drying step was of great relevance, contributing to increase biofertilizer impacts. More research is needed to optimize the algae production chain and determine the possibility of obtaining higher added value products more environmental attractive.


Assuntos
Microalgas , Biomassa , Fósforo , Lagoas , Águas Residuárias
6.
Sci Total Environ ; 711: 135088, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818600

RESUMO

The cultivation of microalgae in wastewater allows to obtain a biomass concentrated in nutrients and organic material. This biomass added to phosphate fertilizers can promote a slow release of the nutrient and consequently a higher absorption of phosphorus (P). The objective of this study was to investigate P uptake by plants subjected to triple superphosphate (TSP) fertilization, added with microalgae biomass (MB) grown in wastewater. TSP was added with different MB proportions in order to verify if there would be a different behaviour in P release for millet (Pennisetum glaucum L.) plants. With the proportion that maximized P accumulation in plants, a second experiment was carried out to investigate whether MB exerts influence of P diffusion in the soil. Finally, a third trial was conducted in a greenhouse, where TSP and TSP + 12% MB were applied to the soil under different phosphorus doses in corn (Zea mays L.). The proportion of MB in TSP that maximized the increase of P content and concentration in plants was approximately 12% MB. From this proportion, a reduction in the values of the variables analysed in the plant with the increase of the proportion of MB in the biofertilizer was observed. Similar behaviour was observed when evaluating P diffusion in sandy and clay soils. Fertilizers TSP and TSP + 12% MB showed no difference in P diffusion in the soil, while the ratio of 30% MB clearly impaired P diffusion. In a greenhouse, the P content presented significant difference for the tests carried out with TSP and TSP + 12% MB fertilizer, in which the latter provided higher P recovery rate by plants. Therefore, MB added to TSP had a positive influence on plant development and its P recovery capacity when applied in a proportion of 12% MB to the fertilizer mass.


Assuntos
Solo , Disponibilidade Biológica , Biomassa , Fertilizantes , Fósforo , Águas Residuárias
7.
Water Sci Technol ; 78(1-2): 57-68, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101789

RESUMO

The present study evaluated the cultivation of microalgae in a photobioreactor using effluents from the meat-processing industry, which had been previously treated at the primary and secondary levels. Scenedesmus sp. was the dominant genus in the phytoplankton community in both of the evaluated effluents. The different nutritional conditions affected the production of biomass, which reached 1,160 mg/L of volatile suspended solids (VSS) and 371 mg/L of VSS with cultivation in the primary (PE) and secondary effluents (SE), respectively. In both effluents, great removal efficiencies close to quantification limits were observed for ammoniacal nitrogen and soluble phosphorus. Regarding the accumulation of lipids, there were no considerable differences between the effluents. The highest lipid productivity that was observed in the PE, which reached 3.7 g/m²·d, was attributed to its larger production of biomass as a consequence of its better nutritional condition in relation to the SE.


Assuntos
Biocombustíveis , Resíduos Industriais , Microalgas/metabolismo , Fotobiorreatores , Biomassa , Indústria de Embalagem de Carne , Nitrogênio/metabolismo , Fósforo/metabolismo
8.
Eng. sanit. ambient ; Eng. sanit. ambient;14(3): 421-430, jul.-set. 2009. tab, ilus
Artigo em Português | LILACS | ID: lil-529920

RESUMO

Este trabalho apresentou os resultados de um estudo realizado durante 19 meses sobre o comportamento de wetlands construídas na remoção de matéria orgânica, sólidos, nutrientes e coliformes, em unidades em escala piloto de fluxo horizontal, subsuperficial e superficial, com tempo de detenção hidráulica entre 1,3 a 5,3 dias, operando como pós-tratamento de efluentes de reatores UASB (esgotos sanitários). A remoção de matéria orgânica e de sólidos mostrou-se elevada e estável, com eficiências médias de 70, 80 e 60 por cento para SST, DBO5 e DQO, respectivamente. A remoção de nutrientes, após início promissor, mostrou-se instável e aparentemente influenciada pela temperatura. O sistema de tratamento revelou elevado potencial de remoção de coliformes, embora com variações relativamente amplas ao longo do período de operação: ≈ 2 log10 de remoção de coliformes totais e 2-4 log10 de remoção de Escherichia coli.


This work presented the results of a 19-month study on the performance of constructed wetlands in terms of organic matter, solids, nutrients and coliforms removal in pilot scale unities with horizontal, subsurface and surface flow, with hydraulic retention time from 1.3 to 5.3 days, as post-treatment of UASB effluents (domestic wastewater). Organic matter and solids were effectively and consistently removed, with average values of 70, 80 and 60 percent for TSS, BOD5 and COD, respectively. Nutrients removal, after a promising start up, became unstable and apparently influenced by temperature. The treatment system has also shown high potential to remove coliforms, although with relatively wide variations over the study period: ≈ 2 log10 reduction of total coliforms and 2-4 log10 reduction of Escherichia coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA