Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 8627, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819156

RESUMO

We present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 µm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ≈70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space.


Assuntos
Temperatura Alta , Campos Magnéticos , Nanopartículas de Magnetita/química , Microglia/citologia , Animais , Linhagem Celular , Sobrevivência Celular , Coloides/química , Hipertermia Induzida/métodos , Magnetismo , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Microglia/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA