Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641444

RESUMO

The family Tephritidae (Diptera) includes species that are highly invasive and harmful to crops. Due to globalization, international trade, and human displacement, their spread is continuously increasing. Unfortunately, the control of tephritid flies is still closely linked to the use of synthetic insecticides, which are responsible for detrimental effects on the environment and human health. Recently, research is looking for alternative and more eco-friendly tools to be adopted in Integrated Pest Management (IPM) programs. In this regard, essential oils (EOs) and their main compounds represent a promising alternative to chemical insecticides. EOs are made up of phytoconstituents formed from the secondary metabolism of many plants and can act as attractants or toxics, depending on the dose. Because of this unique characteristic, EOs and their main constituents are promising tools that can be used both in Sterile Insect Technique (SIT) programs and in the "lure and kill" technique, exploiting the attractiveness of the product in the former case and its toxicity in the latter. In this article, current knowledge on the biological and behavioral effects of EOs and their main constituents on tephritid fruit flies is reviewed, mainly focusing on species belonging to the Anastrepha, Bactrocera, Ceratitis, and Zeugodacus genera. The mechanisms of action of EOs, their real-world applications, and challenges related to their use in IPM are critically discussed.


Assuntos
Controle de Insetos/métodos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Tephritidae/efeitos dos fármacos , Animais
2.
Nat Prod Res ; 35(22): 4746-4752, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31965826

RESUMO

Nowadays, only a little part of essential oils produced at an industrial level is employed for insecticidal formulations, while thousand tons are used for perfumery purposes. This research explores the insecticidal potential of two essential oils largely used in perfumery, ylang ylang (Cananga odorata) and frankincense (Boswellia spp.) on three insects of economic importance, Culex quinquefasciatus, Musca domestica and Spodoptera littoralis, comparing their performances with a commercial pyrethrum extract. GC-MS showed that the ylang ylang and frankincense essential oils were mainly composed of α-thujene (73.8%), benzyl salicylate (24.4%) and linalool (21.9%), respectively. Ylang-ylang and frankincense essential oils showed significant insecticidal activity against C. quinquefasciatus larvae (LC50 < 70 ppm) and M. domestica adults (LD50 < 80 µg/female), respectively, while no relevant toxicity was detected on S. littoralis. As highly available from the fragrance industry, these essential oils may be further considered as promising ingredients to be used in botanical formulations against mosquitoes and houseflies.


Assuntos
Boswellia , Cananga , Franquincenso , Inseticidas , Óleos Voláteis , Animais , Larva , Óleos Voláteis/farmacologia , Óleos de Plantas
3.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114449

RESUMO

In this study, the effect of different drying processes (freeze-drying (FD), microwave-assisted drying (MWD) and classic hot air drying (HAD)) on the polyphenols, flavonoids, and amino acids content was investigated on bee-collected chestnut, willow and ivy pollen for human consumption. Furthermore, the pollen chemical properties were monitored after three and six months of storage, and then analyzed using a multivariate approach. Chestnut pollen was the richest source of polyphenols, flavonoids, and rutin, while ivy pollen contained the highest amount of total and free amino acids, and total and free proline. Drying and storage affected pollen chemical composition with species-dependent effects. MWD allowed the best retention of flavonoids in chestnut pollen for up to six months of storage. All drying techniques led to a depletion of flavonoids in willow pollen; however, MWD ensured the highest flavonoids content after six months. FD and MWD did not lead to flavonoids depletion in ivy pollen during storage. Additionally, storage did not affect the rutin content, which was highest in FD willow samples after six months. Notably, both FD and MWD techniques are efficient in preserving amino acids-related quality of bee pollen up to six months of storage.


Assuntos
Aminoácidos/química , Suplementos Nutricionais/análise , Flavonoides/química , Pólen/química , Polifenóis/química , Rutina/química , Animais , Abelhas , Cromatografia Líquida de Alta Pressão , Dessecação , Armazenamento de Alimentos , Liofilização , Micro-Ondas , Análise Multivariada , Valor Nutritivo
4.
Environ Sci Pollut Res Int ; 27(21): 26594-26604, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372353

RESUMO

Medicinal and aromatic plants represent an outstanding source of green active ingredients for a broad range of real-world applications. In the present study, we investigated the insecticidal potential of the essential oils obtained from three medicinal and aromatic plants of economic importance in Algeria, Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides. Gas chromatography coupled with mass spectrometry (GC-MS) was used to study the essential oil chemical compositions. The three essential oils were tested against a mosquito vectoring filariasis and arboviruses, i.e., Culex quinquefasciatus, a fly pest acting also as pathogens vector, Musca domestica, and an agricultural moth pest, i.e., Spodoptera littoralis, using WHO and topical application methods, respectively. The essential oil from A. campestris, containing ß-pinene (15.2%), α-pinene (11.2%), myrcene (10.3%), germacrene D (9.0%) (Z)-ß-ocimene (8.1%) and γ-curcumene (6.4%), showed remarkable toxicity against C. quinquefasciatus (LC50 of 45.8 mg L-1) and moderate effects (LD50 of 99.8 µg adult-1) against M. domestica. Those from P. arabica and S. satureioides, containing epi-α-cadinol (23.9%), δ-cadinene (21.1%), α-cadinol (19.8%) and germacrene D-4-ol (8.4%), and thymol (25.6%), α-terpineol (24.6%), borneol (17.4%) and p-cymene (11.4%), respectively, were more active on S. littoralis showing LD50 values of 68.9 and 61.2 µg larva-1, respectively. Based on our results, the essential oil from A. campestris may be further considered a candidate ingredient for developing botanical larvicides.


Assuntos
Artemisia , Culex , Inseticidas , Óleos Voláteis , Plantas Medicinais , Pulicaria , Argélia , Animais , Larva
5.
Food Chem Toxicol ; 140: 111312, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32247803

RESUMO

Since time immemorial, the oleo-gum-resins of Ferula assa-foetida and F. gummosa are used in the traditional medical systems as well as in foodstuffs, perfumery and cosmetics. In the present study, we explored the insecticidal efficacy of the essential oils obtained from these oleo-gum-resins to widen their fields of industrial applications. The two essential oils were mainly composed of sulfides [sec-butyl (Z)-propenyl disulfide, sec-butyl (E)-propenyl disulfide, sec-butyl (Z)-propenyl trisulfide and sec-butyl (E)-propenyl trisulfide)] and monoterpenes (α-pinene, ß-pinene and ß-phellandrene), respectively, as determined by GC-MS analysis. The two essential oils were assayed for toxicity on a panel of insects, represented by species of public health relevance (Culex quinquefasciatus and Musca domestica), agricultural (Spodoptera littoralis) and stored-product pests (Prostephanus truncatus and Trogoderma granarium). The ecotoxicological effects of the essential oils were assessed on the aquatic microcrustacean Daphnia magna and the earthworm Eisenia fetida, as well as on human cells. Overall, the two essential oils were effective against important insect pests and vectors. On the other hand, they resulted cytotoxic to fibroblasts and non-target aquatic microcrustaceans. Thus, further insights are needed to determine the full spectrum of their eco-toxicological effects.


Assuntos
Ferula/química , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/toxicidade , Óleos Voláteis/toxicidade , Óleos de Plantas/toxicidade
6.
Food Chem Toxicol ; 138: 111203, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32074491

RESUMO

Thymus alternans and Teucrium montanum subsp. jailae are medicinal and aromatic plants, typical of Slovakian flora, producing bioactive essential oils. In the present study, we evaluated the insecticidal potential of the essential oils, obtained by hydrodistillation from the plant aerial parts and analysed by GC-MS, as insecticidal agents. For the purpose, they were assayed against three insect species acting as agricultural pests or vectors of medical relevance, such as the common housefly, Musca domestica L., the lymphatic filariasis vector, Culex quinquefasciatus and the Egyptian cotton leafworm Spodoptera littoralis; α-cypermethrin was tested as positive control. The two essential oils exhibited a different chemical profile, with monoterpenes and sesquiterpenes being the main fractions in the essential oils from Th. alternans and T. montanum subsp. jailae, respectively. Insecticidal tests showed that the T. montanum essential oil was effective against S. littoralis (LD50(90) = 56.7 (170.0) µg larva-1) and Cx. quinquefasciatus larvae (LC50(90) = 180.5 (268.7) mg L-1), whereas T. alternans essential oil displayed good toxicity against M. domestica adults (LD50(90) = 103.7 (223.9) µg adult-1). Overall, our results add useful knowledge about the potential of Slovakian flora as a source of botanicals for the eco-friendly management of insect pests and vectors.


Assuntos
Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Plantas Medicinais/química , Teucrium/química , Thymus (Planta)/química , Animais , Culex/efeitos dos fármacos , Culex/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Moscas Domésticas/efeitos dos fármacos , Moscas Domésticas/metabolismo , Inseticidas/análise , Larva/efeitos dos fármacos , Larva/metabolismo , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/análise , Piretrinas/análise , Piretrinas/farmacologia , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Eslováquia , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo
7.
Food Chem Toxicol ; 138: 111184, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32061727

RESUMO

Marsh rosemary (Ledum palustre, Ericaceae) has been widely used in the traditional medicine of various regions worldwide, and as insect repellent. Little is known on its essential oil insecticidal potential. This study explored the insecticidal effects of the essential oil obtained from L. palustre growing in Poland on selected insect pests and vectors. GC-MS analysis evidenced an uncommon chemotype characterized by ascaridole (35.3% as sum of cis-ascaridole and isoascaridole) and p-cymene (25.5%). The essential oil was effective against Culex quinquefasciatus, Spodoptera littoralis and Musca domestica, showing LC50/LD50 of 66.6 mg L-1, 117.2 µg larva-1 and 61.4 µg adult-1, respectively. It was not toxic to non-target Eisenia fetida earthworms and moderately toxic to Daphnia magna microcrustaceans, over the positive control α-cypermethrin. The essential oil cytotoxicity on human keratinocytes and fibroblasts showed high IC50 values (71.3 and 84.4 µg mL-1, respectively). Comet assay data highlighted no DNA damages. Based on our findings, this essential oil, characterized by the ascaridole/p-cymene chemotype, could be a candidate for the formulation of botanical insecticides; large-scale production of green insecticides by this rare species may be assured by ex situ cultivation and biotechnological techniques.


Assuntos
Monoterpenos Cicloexânicos/farmacologia , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Peróxidos/farmacologia , Rosmarinus/química , Animais , Linhagem Celular , Ensaio Cometa , Culex/efeitos dos fármacos , Culicidae/efeitos dos fármacos , Monoterpenos Cicloexânicos/análise , Cimenos/análise , Cimenos/farmacologia , Daphnia/efeitos dos fármacos , Moscas Domésticas/efeitos dos fármacos , Humanos , Repelentes de Insetos/análise , Repelentes de Insetos/farmacologia , Inseticidas/análise , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Óleos Voláteis/análise , Oligoquetos/efeitos dos fármacos , Peróxidos/análise , Polônia , Piretrinas/análise , Piretrinas/farmacologia , Spodoptera/efeitos dos fármacos
8.
Food Chem Toxicol ; 136: 111037, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31816346

RESUMO

Carlina acaulis (Compositae) is traditionally used for food and medicinal purposes in central and southern Europe. Its root essential oil (EO), mainly composed by carlina oxide, is included in the BELFRIT botanical list of food supplements. It is also recognized as a potent mosquito larvicide. It is matter of concern whether this EO could be endowed with intrinsic toxicity to limit its use on a food level. Focusing on the insecticidal activity of this EO, we investigated the acute toxicity and sublethal effects on Musca domestica. In topical assays, the EO was extremely effective (LD50 = 2.74 and 5.96 µg fly-1, on males and females, respectively). The exposure to a sublethal dose (LD30) led to significant reductions of female longevity (LT50 = 6.7-9.0 days vs. control LT50 = 12.9-13.7 days). Treated females laid 2.5 times fewer eggs over control ones. F1 vitality decreased: F1 larvae and pupae showed high mortality, 2-4-fold higher over the control. The EO also showed high cytotoxicity on normal human fibroblasts (NHF-A12, IC50 = 9.4-14.2 µg mL-1 after 6-48 h). Overall, our findings support the employ of this EO for developing botanical insecticides. At the same time, they encourage food safety authorities to perform a full toxicological assessment for possible restrictions at food level.


Assuntos
Moscas Domésticas/efeitos dos fármacos , Inseticidas/toxicidade , Óleos Voláteis/toxicidade , Óleos de Plantas/toxicidade , Animais , Linhagem Celular , Feminino , Humanos , Larva/efeitos dos fármacos , Magnoliopsida/química , Masculino , Raízes de Plantas/química , Pupa/efeitos dos fármacos
9.
J Ethnopharmacol ; 248: 112333, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31654797

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of Hazomalania voyronii, popularly known as hazomalana, to repel mosquitoes and resist against insect attacks is handed down from generation to generation in Madagascar. In the present study, we investigated the ability of the essential oils (EOs) obtained from the stem wood, fresh and dry bark of H. voyronii to keep important mosquito vectors (Aedes aegypti and Culex quinquefasciatus) away, as well as their toxicity on three insect species of agricultural and public health importance (Cx. quinquefasciatus, Musca domestica and Spodoptera littoralis). MATERIALS AND METHODS: Hydrodistillation was used to obtain EOs from stem wood, fresh and dry bark. The chemical compositions were achieved by gas chromatography-mass spectrometry (GC-MS). Toxicity assays using stem wood and bark EOs were performed on larvae of Cx. quinquefasciatus and S. littoralis, and adults of M. domestica by WHO and topical application methods, respectively. Mosquito repellent activity of the most effective EO, i.e. the bark one, was determined on human volunteers by arm-in-cage tests, and results were compared with that of the commercial repellent N,N-ddiethyl-m-toluamide (DEET). RESULTS: The H. voyronii EOs were characterized by oxygenated monoterpenes with perilla aldehyde (30.9-47.9%) and 1,8-cineole (19.7-33.2%) as the main constituents. The fresh and dry bark EOs were the most active on Cx. quinquefasciatus and S. littoralis larvae, respectively, with LC50/LD50 of 65.5  mg L-1, and 50.5  µg larva-1; the EOs from wood and fresh bark displayed the highest toxicity on M. domestica (LD50 values 60.8 and 65.8 µg adult-1, respectively). Repellence assay revealed an almost complete protection (>80%) from both mosquito species for 30 min when pure fresh bark EO was applied on the volunteers' arm, while DEET 10% repelled >80% of the mosquitoes up to 120 min from application. CONCLUSION: The traditional use of the bark EO to repel insects has been demonstrated although an extended-release formulation based on H. voyronii EOs is needed to increase the repellent effect over time. A wide spectrum of insecticidal activity has been provided as well, suggesting a possible use of H. voyronii EOs in the fabrication of green repellents and insecticides useful to control mosquito vectors and agricultural pests.


Assuntos
Aedes/efeitos dos fármacos , Culex/efeitos dos fármacos , Hernandiaceae , Moscas Domésticas/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Controle de Mosquitos , Óleos Voláteis/farmacologia , Casca de Planta , Óleos de Plantas/farmacologia , Spodoptera/efeitos dos fármacos , Madeira , Aedes/crescimento & desenvolvimento , Animais , Culex/embriologia , DEET/farmacologia , Hernandiaceae/química , Moscas Domésticas/crescimento & desenvolvimento , Humanos , Repelentes de Insetos/isolamento & purificação , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Óleos Voláteis/isolamento & purificação , Casca de Planta/química , Óleos de Plantas/isolamento & purificação , Spodoptera/embriologia , Fatores de Tempo , Madeira/química
10.
Molecules ; 24(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311079

RESUMO

Developing effective and eco-friendly antiparasitic drugs and insecticides is an issue of high importance nowadays. In this study, we evaluated the anthelminthic and insecticidal potential of the leaf essential oil obtained from Origanum syriacum against the L3 larvae of the parasitic nematode Anisakis simplex and larvae and adults of the mosquito Culex quinquefasciatus. Tests on A. simplex were performed by standard larvicidal and penetration assays, while mosquito toxicity was assessed relying on larvicidal, tarsal contact, and fumigation tests. To shed light on the possible mode of action, we analyzed the oil impact as acetylcholinesterase (AChE) inhibitor. This oil was particularly active on L3 larvae of A. simplex, showing a LC50 of 0.087 and 0.067 mg mL-1 after 24 and 48 h treatment, respectively. O. syriacum essential oil was highly effective on both larvae and adults of C. quinquefasciatus, showing LC50 values of 32.4 mg L-1 and 28.1 µg cm-2, respectively. Its main constituent, carvacrol, achieved larvicidal LC50(90) of 29.5 and 39.2 mg L-1, while contact toxicity assays on adults had an LC50(90) of 25.5 and 35.8 µg cm-2, respectively. In fumigation assays, the LC50 was 12.1 µL L-1 after 1 h and decreased to 1.3 µL L-1 in 24 h of exposure. Similarly, the fumigation LC50 of carvacrol was 8.2 µL L-1 after 1 h of exposure, strongly decreasing to 0.8 µL L-1 after 24 h of exposure. These results support the folk usage of Lebanese oregano as an antiparasitic agent, providing new insights about its utilization for developing new effective and eco-friendly nematocidal and insecticidal products.


Assuntos
Anisakis/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Culex/efeitos dos fármacos , Óleos Voláteis/farmacologia , Origanum/química , Animais , Inibidores da Colinesterase/química , Cimenos/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
11.
J Photochem Photobiol B ; 180: 225-234, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29459314

RESUMO

The development of eco-friendly and effective insecticides is crucial for public health worldwide. Herein, we focused on the desert wormwood (Artemisia herba-alba), a plant widely used in Arabian traditional medicine, as a source of green nanoinsecticides against mosquito vectors, as well as growth inhibitors to be employed against microbial pathogens. Ag nanoparticles (AgNPs) fabricated with the A. herba-alba extract were tested on Indian and Saudi Arabian strains of Anopheles, Aedes and Culex mosquitoes. The chemical profile of the A. herba-alba extract was determined by LC-DAD-MS and 1H NMR studies. Then, AgNPs were studied using UV-vis spectroscopy, XRD, FTIR spectroscopy, TEM, and EDX analyses. Artemisia herba-alba-synthesized AgNPs showed high larvicidal toxicity against mosquitoes from both Indian and Saudi Arabian strains. LC50 of AgNPs against Indian strains was 9.76 µg/ml for An. stephensi, 10.70 µg/ml for Ae. aegypti and 11.43 µg/ml for Cx. quinquefasciatus, whereas against Saudi Arabian strains it was 33.58 µg/ml for Ae. aegypti and 38.06 µg/ml for Cx. pipiens. In adulticidal experiments, A. herba-alba extract showed LC50 ranging from 293.02 to 450 µg/ml, while AgNP LC50 ranged from 8.22 to 27.39 µg/ml. Further, low doses of the AgNPs inhibited the growth of selected microbial pathogens. Overall, A. herba-alba can be further considered as a source of phytochemicals, with special reference to saponins, for effective and prompt fabrication of AgNPs with relevant insecticidal and bactericidal activity against species of high public health importance.


Assuntos
Aedes , Artemisia/química , Inseticidas , Medicina Tradicional , Nanopartículas Metálicas/toxicidade , Mosquitos Vetores , Animais , Artemisia/metabolismo , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Larva/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Vet Parasitol ; 244: 102-110, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917299

RESUMO

The tick Rhipicephalus (Boophilus) microplus is a key vector of bacterial and protozoan diseases causing heavy economic losses directly and indirectly in animal husbandry. In the past decades, the control of ticks faced some major issues, such as the rapid development of resistance in targeted vectors and non-target effects on human health and the environment, due to the employ of synthetic acaricides and repellents. Eco-friendly pesticides for treating and controlling animal parasites such as ticks were mainly from medicinal plants and thus they form the richest entity for manufacturing resources for drugs. Even though there are efforts made to discover reliable plant-based acaricides to control ectoparasites in animal husbandry, the effective control of R. (B.) microplus ticks still represent a major challenge in current veterinary entomology. Recently, a wide number of promising attempts have been conducted to use herbal preparations and green-fabricated nanoparticles for the control of R. (B.) microplus. The aim of this review is to critically summarize and discuss the use of herbal preparations used in ethno-veterinary as well as green-fabricated nanoparticles as novel acaricides for the control of the cattle tick R. (B.) microplus.


Assuntos
Acaricidas/farmacologia , Vetores Aracnídeos/efeitos dos fármacos , Doenças dos Bovinos/parasitologia , Rhipicephalus/efeitos dos fármacos , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/veterinária , Criação de Animais Domésticos , Animais , Vetores Aracnídeos/parasitologia , Bovinos , Composição de Medicamentos , Nanopartículas/química , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Rhipicephalus/parasitologia , Infestações por Carrapato/parasitologia
13.
Parasitol Int ; 66(2): 166-171, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110082

RESUMO

Mosquito vector control is facing a number of important and timely challenges, mainly due to the rapid development of pesticide resistance and environmental concerns. In this scenario, screening of botanical resources for their mosquitocidal activity may offer effective and eco-friendly tools against Culicidae vectors. Culex quinquefasciatus Say (Diptera: Culicidae) is a vector of lymphatic filariasis and of dangerous arboviral diseases, such as West Nile and St. Louis encephalitis. In this study, the chemical composition of five essential oils obtained from different plants, namely Pinus nigra J.F. Arnold var. italica (Pinaceae), Hyssopus officinalis L. subsp. aristatus (Lamiaceae), Satureja montana L. subsp. montana (Lamiaceae), Aloysia citriodora Palau (Verbenaceae) and Pelargonium graveolens L'Hér (Geraniaceae), was investigated by GC-MS analysis. Furthermore, it was evaluated their acute toxicity on larvae of C. quinquefasciatus. Then, the most effective oils were selected, in order to focus on the potential synergistic and antagonistic effects, testing them in binary mixtures on C. quinquefasciatus larvae. Results showed that the higher effectiveness was obtained by S. montana subsp. montana essential oil (LC50=25.6µL·L-1), followed by P. nigra var. italica (LC50=49.8µL·L-1) and A. citriodora (LC50=65.6µL·L-1), while the other essential oils showed LC50 values higher than 90µL·L-1. The larvicidal effectiveness can be enhanced by preparing simple binary mixtures of essential oils, such as S. montana+A. citriodora (ratio 1:1), which showed higher larvicidal toxicity (LC50=18.3µL·L-1). On the other hand, testing S. montana+P. nigra (1:1) an antagonistic effect was detected, leading to a LC50 (72.5µL·L-1) higher than the LC50 values calculated for the two oils tested separately. Overall, our results add useful knowledge to allow the employ of synergistic essential oil blends as effective, cheap and eco-friendly mosquito larvicides.


Assuntos
Culex/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Antagonismo de Drogas , Sinergismo Farmacológico , Filariose Linfática/prevenção & controle , Filariose Linfática/transmissão , Encefalite de St. Louis/prevenção & controle , Encefalite de St. Louis/transmissão , Cromatografia Gasosa-Espectrometria de Massas , Hyssopus/química , Inseticidas/química , Larva/efeitos dos fármacos , Óleos Voláteis/química , Pelargonium/química , Pinus/química , Folhas de Planta/química , Óleos de Plantas/química , Satureja/química , Verbenaceae/química , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/transmissão
14.
Nat Prod Res ; 31(4): 369-386, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27687478

RESUMO

Pesticide resistance is going to change rapidly our antibiotics and insecticides arsenal. In this scenario, plant-derived natural products are considered valuable candidates to reverse this negative trend. Growing research attention is focused on neem (Azadirachta indica, Meliaceae), exploring the utility of its products as insecticides and antibiotics. In this review, we summarised the knowledge on neem oil and neem cake by-products in arthropod pest control, with special reference to mosquito vectors of public health importance. To the best of our knowledge, neem-borne products currently showed effective and eco-friendly features, including little non-target effects, multiple mechanisms of action, low cost, easy production in countries with limited industrial facilities. In particular, the potentiality of neem cake as ideal and affordable source of mosquitocidal compounds in anopheline and aedine control programmes is outlined. Overall, we propose the employ of neem-based products as an advantageous alternative to build newer and safer arthropod control tools.


Assuntos
Azadirachta , Inseticidas/farmacologia , Animais , Etnobotânica , Glicerídeos/farmacologia , Controle de Pragas , Terpenos/farmacologia
15.
Nat Prod Res ; 31(10): 1185-1190, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27552943

RESUMO

Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies. Ovicidal activity of both types of extracts was statistically significant, and 150 ppm completely inhibited egg hatching. LC50 values were extremely low against fourth instar larvae, ranging from 1.321 (NM1) to 1.818 ppm (NA2). Adulticidal activity was also high, with LC50 ranging from 3.015 (NM1) to 3.637 ppm (NM2). This study pointed out the utility of neem cake as a source of eco-friendly mosquitocides in Anopheline vector control programmes.


Assuntos
Anopheles/efeitos dos fármacos , Azadirachta , Cromatografia em Camada Fina/métodos , Inseticidas/farmacologia , Malária/transmissão , Extratos Vegetais/farmacologia , Animais , Azadirachta/química , Insetos Vetores , Larva/efeitos dos fármacos
16.
Res Vet Sci ; 109: 1-9, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27892855

RESUMO

Ticks transmit at least the same number or even more pathogens than any other group of blood-feeding arthropods worldwide affecting humans and animals. The eco-friendly control and management of tick vectors in a constantly changing environment is a crucial challenge. Besides the development of vaccines against ticks, IPM practices aimed at reducing tick interactions with livestock, emerging pheromone-based control tools, and few biological control agents, the extensive employment of acaricides and tick repellents still remain the most effective and ready-to-use strategies. However, the former is limited by the development of growing resistances as well as environmental concerns. Exploiting plants and plant products as sources of effective tick repellents and acaricides represents a promising strategy. In this scenario, the preservation of ethnobotanical information on repellent and acaricidal potential of plants is crucial. Here, we evaluated relevant information published in recent years, focused on plants used as repellents and acaricides against tick vectors in different regions worldwide. We selected a total of 238 plant species, which are traditionally used against ticks by native and local communities of Africa (Kenya, Uganda, Zimbabwe, South Africa), Europe (Serbia, Macedonia, Romania), Asia (Pakistan, India) and America (Brazil, Canada), from 56 families. However, only 7 families (i.e. Asteraceae, Euphorbiaceae, Fabaceae, Lamiaceae, Meliaceae, Apocynaceae and Solanaceae) represent the major quote (46%) of all plant species. We evaluated the differences in acaricidal and repellent efficacy of different formulations used. In the final section, implications arising from the surveyed anti-tick ethnobotanical knowledge and challenges for its future are discussed.


Assuntos
Acaricidas/farmacologia , Repelentes de Insetos/farmacologia , Gado , Infestações por Carrapato/veterinária , Carrapatos/efeitos dos fármacos , Animais , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle
17.
Parasitol Res ; 115(12): 4617-4626, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27679452

RESUMO

In Cameroon, many dietary spices are used by traditional healers to cure several diseases such as cancer and microbial infections. Aframomum daniellii, Dichrostachys cinerea and Echinops giganteus are Cameroonian spices widely used as flavourings and as food additives. Moreover, they are traditionally herbal remedies employed to treat several diseases, as well as to control populations of insect pests. In this research, we analysed the chemical composition of A. daniellii, D. cinerea and E. giganteus essential oils and we evaluated their larvicidal potential against larvae of the filariasis and West Nile virus vector Culex quinquefasciatus. The essential oils were obtained from different plant parts by hydrodistillation and their composition was analysed by GC-MS. The three spices exhibited different volatile chemical profiles, being characterized by 1,8-cineole, sabinene and ß-pinene (A. daniellii), geraniol and terpinen-4-ol (D. cinerea), and silphiperfol-6-ene and presilphiperfolan-8-ol (E. giganteus). Results showed that the highest larvicidal toxicity on Cx. quinquefasciatus was exerted by D. cinerea essential oil (LC50 = 39.1 µL L-1), followed by A. daniellii (pericarp essential oil: LC50 = 65.5 µL L-1; leaves: LC50 = 65.5µL L-1; seeds: LC50 = 106.5µL L-1) and E. giganteus (LC50 = 227.4 µL L-1). Overall, the chance to use the D. cinerea essential oil against Cx. quinquefasciatus young instars seems promising, since it is effective at moderate doses and could be an advantageous alternative to build newer mosquito control tools.


Assuntos
Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Especiarias/análise , Animais , Anopheles/crescimento & desenvolvimento , Camarões , Culex/crescimento & desenvolvimento , Filariose/transmissão , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/química , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Óleos Voláteis/química , Folhas de Planta/química
18.
Parasitol Res ; 115(7): 2545-60, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27146901

RESUMO

Arthropods are dangerous vectors of agents of deadly diseases, which may hit as epidemics or pandemics in the increasing world population of humans and animals. Among them, ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide. Thus, the effective and eco-friendly control of tick vectors in a constantly changing environment is a crucial challenge. A number of novel routes have been attempted to prevent and control tick-borne diseases, including the development of (i) vaccines against viruses vectored by ticks; (ii) pheromone-based control tools, with special reference to the "lure and kill" techniques; (iii) biological control programmes relying on ticks' natural enemies and pathogens; and (iv) the integrated pest management practices aimed at reducing tick interactions with livestock. However, the extensive employment of acaricides and tick repellents still remains the two most effective and ready-to-use strategies. Unfortunately, the first one is limited by the rapid development of resistance in ticks, as well as by serious environmental concerns. On the other hand, the exploitation of plants as sources of effective tick repellents is often promising. Here, we reviewed current knowledge concerning the effectiveness of plant extracts as acaricides or repellents against tick vectors of public health importance, with special reference to Ixodes ricinus, Ixodes persulcatus, Amblyomma cajennense, Haemaphysalis bispinosa, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma marginatum rufipes, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus pulchellus, Rhipicephalus sanguineus and Rhipicephalus turanicus. Eighty-three plant species from 35 botanical families were selected. The most frequent botanical families exploited as sources of acaricides and repellents against ticks were Asteraceae (15 % of the selected studies), Fabaceae (9 %), Lamiaceae (10 %), Meliaceae (5 %), Solanaceae (6 %) and Verbenaceae (5 %). Regression equation analyses showed that the literature grew by approximately 20 % per year (period: 2005-2015). Lastly, in the final section, insights for future research are discussed. We focused on some caveats for future data collection and analysis. Current critical points mainly deal with (a) not uniform methods used, which prevent proper comparison of the results; (b) inaccurate tested concentrations, frequently 100 % concentration corresponded to the gross extract, where the exact amounts of extracted substances are unknown; and (c) not homogeneous size of tested tick instars and species. Overall, the knowledge summarized in this review may be helpful for comparative screening among extensive numbers of plant-borne preparations, in order to develop newer and safer tick control tools.


Assuntos
Acaricidas/farmacologia , Ixodes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhipicephalus sanguineus/efeitos dos fármacos , Controle de Ácaros e Carrapatos/métodos , Doenças Transmitidas por Carrapatos/prevenção & controle , Animais , Asteraceae/química , Vetores de Doenças , Fabaceae/química , Lamiaceae/química , Gado
19.
Environ Sci Pollut Res Int ; 23(8): 7543-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732702

RESUMO

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 µg/ml (CQ-s) and 51.16 µg/ml (CQ-r). AuNP IC50 was 69.47 µg/ml (CQ-s) and 76.33 µg/ml (CQ-r). Overall, our results showed the multipurpose effectiveness of C. guianensis-synthesized AuNPs, since they may be proposed as newer and safer tools in the fight against CQ-r strains of P. falciparum and for field control of malaria vectors, in synergy with wonder killifish predators.


Assuntos
Anopheles/parasitologia , Antimaláricos/farmacologia , Ouro/farmacologia , Insetos Vetores/efeitos dos fármacos , Lecythidaceae/química , Nanopartículas Metálicas/análise , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/análise , Ciprinodontiformes/fisiologia , Flores/química , Ouro/análise , Inseticidas/análise , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Nanopartículas Metálicas/química , Extratos Vegetais/química , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos
20.
Parasitol Res ; 115(3): 1071-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26614358

RESUMO

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV-Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological niche of Cx. quinquefasciatus.


Assuntos
Culex , Insetos Vetores , Nanopartículas/toxicidade , Animais , Benzotiazóis/metabolismo , Compostos de Bifenilo/metabolismo , Carbono , Culex/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Carpa Dourada/genética , Carpa Dourada/fisiologia , Heterópteros/efeitos dos fármacos , Heterópteros/genética , Heterópteros/fisiologia , Índia , Indicadores e Reagentes/metabolismo , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Dose Letal Mediana , Moringa oleifera/química , Nanopartículas/química , Picratos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Sementes/química , Prata , Organismos Livres de Patógenos Específicos , Ácidos Sulfônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA