Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Alzheimers Dis ; 59(1): 301-311, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598848

RESUMO

Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Suplementos Nutricionais , Sinapses/metabolismo , Animais , Ácido Ascórbico/administração & dosagem , Peso Corporal/fisiologia , Encéfalo/citologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ingestão de Alimentos/fisiologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos/metabolismo , Alimentos Formulados , Masculino , Malondialdeído/metabolismo , Fosfolipídeos/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Selênio/administração & dosagem , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Vitamina E/administração & dosagem
2.
Brain Res ; 1659: 81-87, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28126402

RESUMO

Hypoxic-ischemic encephalopathy (HIE), is the most common brain disorder in neonates during the perinatal period, which, to date, can only be managed to some extent by hypothermia. Uridine is the principal circulating pyrimidine in humans which is utilized as a precursor for membrane phospholipid biosynthesis. Uridine has recently been shown to provide clinical benefit in treatment of Alzheimer's disease due to its involvement in increasing number of brain synapses along with other phospholipid precursors. We previously showed that uridine treatment ameliorated brain damage by reducing apoptosis in a rat model of neonatal HIE. The aim of the present study was to investigate the effects of uridine administration on cognitive functions during periadolescent period in rats subjected to hypoxic-ischemic (HI) brain damage in neonatal period. Male newborn rats were subjected to HI insult on postnatal day 7 (P7) and were injected intraperitoneally with either saline or uridine (500mg/kg) for three consecutive days. Part of pups in each group were sacrificed on P10 to collect brain samples for active Caspase-3 analyses and the remaining pups were raised through P40 to evaluate early reflexes, sensorimotor coordination and learning and memory functions by Negative Geotaxis (NG), Beam Walking (BW) and Morris Water Maze (MWM) tasks, respectively. Confirming our previous findings, we showed that uridine administration reduced apoptotic cell damage on P10. No significant difference was observed between uridine and saline groups in early reflexes or sensorimotor coordination. On the other hand, rats receiving uridine displayed improved learning and memory in MWM during periadolescent period. We conclude that uridine treatment improves learning and memory in the long term by, probably, reducing apoptotic cell death in early newborn period. This is the first study to show beneficial cognitive effects of uridine in rats with brain damage.


Assuntos
Cognição/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Nootrópicos/farmacologia , Uridina/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/psicologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Ratos Sprague-Dawley
3.
Neuromolecular Med ; 18(3): 426-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27250850

RESUMO

Phospholipids are the main constituents of brain membranes. Formation of new membranes requires that uridine, the omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA), and choline, the three circulating precursors of major phospholipids, interact via the Kennedy pathway. Supplementation of laboratory rodents with uridine, DHA and choline enhances the amount of brain membranes as well as synaptic proteins and increases the number of dendritic spines, the essential cytological precursor of new synapses. Hence, the newly formed membranes are utilized for synaptogenesis which underlies increased synaptic functioning evidenced by enhanced neurotransmission and cognition. In addition, this supplementation ameliorates the degeneration in a rat model of Parkinson's disease and mouse models of Alzheimer's disease (AD) when used in combination with several vitamins and cofactors. Hence, accumulating evidence shows that increasing the availability of phospholipid precursors, vitamins and cofactors to the brain through dietary supplementation enhances the formation of new synapses and provides protection under neurodegenerative conditions. The combination has been tested in clinical trials and a medication has been marketed for early-stage AD patients.


Assuntos
Suplementos Nutricionais , Fosfolipídeos/metabolismo , Sinapses/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/fisiopatologia , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos , Ratos
4.
Lipids ; 51(7): 833-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27038174

RESUMO

Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Insaturados/sangue , Lecitinas/administração & dosagem , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/sangue , Sinergismo Farmacológico , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Masculino , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Ratos , Ratos Wistar
5.
Neurobiol Aging ; 36(1): 344-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25146455

RESUMO

Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Neurônios Colinérgicos/fisiologia , Dieta , Hipocampo/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Animais , Colina O-Acetiltransferase/metabolismo , Hipocampo/metabolismo , Masculino , Ratos Wistar , Membranas Sinápticas/fisiologia
6.
J Hum Lact ; 30(2): 161-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24194609

RESUMO

BACKGROUND: Choline is an important component of human breast milk and its content varies considerably among breastfeeding women and lactation periods. OBJECTIVE: The aim of this study was to assess the relationship between breast milk choline contents and inflammatory status in breastfeeding women. METHODS: Breast milk choline compounds and serum C-reactive protein (CRP) concentrations were determined in breastfeeding women at 1 to 3 (n = 53) or 22 to 180 (n = 54) days postpartum, expressing colostrum or mature milk, respectively. RESULTS: Median concentrations of free choline, phosphocholine, glycerophosphocholine, phospholipid-bound choline, and total choline were 71, 38, 96, 194, and 407 µmol/L or 93, 351, 958, 186, and 1532 µmol/L in colostrum or mature milk, respectively. Median serum CRP concentrations were 4.13 mg/L and 0.33 mg/L at 1 to 3 days and 22 to 180 days postpartum, respectively. At 1 to 3 days postpartum, milk free choline, phosphocholine, glycerophosphocholine, and total choline as well as serum CRP concentrations were significantly higher in breastfeeding women who delivered by cesarean section than those who delivered via the vaginal route. Serum CRP concentration was positively correlated with colostrum free choline (r = 0.703; P < .001), phosphocholine (r = 0.759; P < .001), glycerophosphocholine (r = 0.706; P < .001), and total choline (r = 0.693; P < .001), whereas it was negatively correlated (r = -0.442; P < .001) with colostrum phospholipid-bound choline. Serum CRP was also negatively correlated with mature milk free choline (r = -0.278; P < .05), but no correlation was found between serum CRP and other choline compounds in mature milk. CONCLUSION: These data show that the concentrations of milk choline compounds are associated with inflammatory status of breastfeeding women, particularly during the first few days after delivery.


Assuntos
Aleitamento Materno/efeitos adversos , Proteína C-Reativa/metabolismo , Colina/metabolismo , Colostro/metabolismo , Leite Humano/metabolismo , Fragmentos de Peptídeos/metabolismo , Período Pós-Parto/fisiologia , Proteína C-Reativa/efeitos adversos , Colina/efeitos adversos , Feminino , Humanos , Fragmentos de Peptídeos/efeitos adversos , Gravidez
7.
Nutrition ; 29(9): 1080-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756280

RESUMO

Alzheimer's disease (AD) is a heterogeneous and devastating neurodegenerative disease with increasing socioeconomic burden for society. In the past 30 y, notwithstanding advances in the understanding of the pathogenesis of the disease and consequent development of therapeutic approaches to novel pathogenic targets, no cure has so far emerged. This contribution focuses on recent nutritional approaches in the risk reduction and management of AD with emphasis on factors providing a rationale for nutritional approaches in AD, including compromised nutritional status, altered nutrient uptake and metabolism, and nutrient requirements for synapse formation. Collectively these factors are believed to result in specific nutritional requirement in AD. The chapter also emphasizes investigated nutritional interventions in patients with AD, including studies with single nutrients and with the specific nutrient combination Fortasyn Connect and discusses the current shift of paradigm to intervene in earlier stages of AD, which offers opportunities for investigating nutritional strategies to reduce the risk for disease progression. Fortasyn Connect was designed to enhance synapse formation and function in AD by addressing the putative specific nutritional requirements and contains docosahexaenoic acid, eicosapentaenoic acid, uridine-5'-mono-phosphate, choline, phospholipids, antioxidants, and B vitamins. Two randomized controlled trials (RCTs) with the medical food Souvenaid, containing Fortasyn Connect, showed that this intervention improved memory performance in mild, drug-naïve patients with AD. Electroencephalography outcome in one of these clinical studies suggests that Souvenaid has an effect on brain functional connectivity, which is a derivative of changed synaptic activity. Thus, these studies suggest that nutritional requirements in AD can be successfully addressed and result in improvements in behavioral and neuro-physiological alterations that are characteristic to AD. The recent advance of methodologies and techniques for early diagnosis of AD facilitates the investigation of strategies to reduce the risk for AD progression in the earliest stages of the disease. Nutrition-based approaches deserve further investigation as an integral part of such strategies due to their low risk for side effects and their potential to affect pathological processes of very early AD.


Assuntos
Doença de Alzheimer/dietoterapia , Suplementos Nutricionais , Avaliação Nutricional , Estado Nutricional , Comportamento de Redução do Risco , Doença de Alzheimer/fisiopatologia , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas Alimentares/administração & dosagem , Progressão da Doença , Ingestão de Energia , Ácidos Graxos/administração & dosagem , Ácidos Graxos/sangue , Humanos , Micronutrientes/administração & dosagem , Micronutrientes/sangue , Desnutrição Proteico-Calórica/dietoterapia , Desnutrição Proteico-Calórica/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
J Surg Res ; 183(1): 119-28, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23228325

RESUMO

BACKGROUND: Cytidine 5'-diphosphocholine (CDP-choline) is an endogenous intermediate in the biosynthesis of phosphatidylcholine, a contributor to the mucosal defense of the intestine. The aim of this study was to evaluate the possible cytoprotective effect of CDP-choline treatment on intestinal cell damage, membrane phospholipid content, inflammation, and apoptosis in a neonatal rat model of necrotizing enterocolitis (NEC). METHODS: We divided a total of 30 newborn pups into three groups: control, NEC, and NEC + CDP-choline. We induced NEC by enteral formula feeding, exposure to hypoxia-hyperoxia, and cold stress. We administered CDP-choline intraperitoneally at 300 mg/kg/d for 3 d starting from the first day of life. We evaluated apoptosis macroscopically and histopathologically in combination with proinflammatory cytokines in the gut samples. Moreover, we determined membrane phospholipid levels as well as activities of xanthine oxidase, superoxide dismutase, glutathione peroxidase, and myeloperoxidase enzymes and the malondialdehyde content of intestinal tissue. RESULTS: Mean clinical sickness score, macroscopic gut assessment score, and intestinal injury score were significantly improved, whereas mean apoptosis score and caspase-3 levels were significantly reduced in pups in the NEC + CDP-choline group compared with the NEC group. Tissue proinflammatory cytokine (interleukin-1ß, interleukin-6, and tumor necrosis factor-α) levels as well as tissue malondialdehyde content and myeloperoxidase activities were reduced, whereas glutathione peroxidase and superoxide dismutase activities were preserved in the NEC + CDP-choline group. In addition, NEC damage reduced intestinal tissue membrane phospholipids, whereas CDP-choline significantly enhanced total phospholipid and phosphatidylcholine levels. Long-term follow-up in additional experiments revealed increased body weight, decreased clinical sickness scores, and enhanced survival in CDP-choline-receiving versus saline-receiving pups with NEC lesions. CONCLUSIONS: Our study reports, for the first time, beneficial effects of CDP-choline treatment on intestinal injury in a neonatal rat model of NEC. Our data suggest that CDP-choline may be used as an effective therapeutic agent to prevent NEC.


Assuntos
Citidina Difosfato Colina/uso terapêutico , Enterocolite Necrosante/prevenção & controle , Nootrópicos/uso terapêutico , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Citidina Difosfato Colina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Enterocolite Necrosante/enzimologia , Enterocolite Necrosante/patologia , Intestinos/enzimologia , Intestinos/patologia , Nootrópicos/farmacologia , Ratos
9.
Dev Neurosci ; 31(3): 181-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19145070

RESUMO

Developing neurons synthesize substantial quantities of membrane phospholipids in producing new synapses. We investigated the effects of maternal uridine (as uridine-5'-monophosphate) and docosahexaenoic acid supplementation on pups' brain phospholipids, synaptic proteins and dendritic spine densities. Dams consumed neither, 1 or both compounds for 10 days before parturition and 20 days while nursing. By day 21, brains of weanlings receiving both exhibited significant increases in membrane phosphatides, various pre- and postsynaptic proteins (synapsin-1, mGluR1, PSD-95), and in hippocampal dendritic spine densities. Administering these phosphatide precursors to lactating mothers or infants could be useful for treating developmental disorders characterized by deficient synapses.


Assuntos
Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Sinapses/efeitos dos fármacos , Uridina/administração & dosagem , Administração Oral , Animais , Animais Recém-Nascidos , Western Blotting , Suplementos Nutricionais , Feminino , Fosfolipídeos , Gravidez , Ratos , Ratos Sprague-Dawley
10.
Brain Res ; 1182: 50-9, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17950710

RESUMO

Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, is an essential component of membrane phosphatides and has been implicated in cognitive functions. Low levels of circulating or brain DHA are associated with various neurocognitive disorders including Alzheimer's disease (AD), while laboratory animals, including animal models of AD, can exhibit improved cognitive ability with a diet enriched in DHA. Various cellular mechanisms have been proposed for DHA's behavioral effects, including increases in cellular membrane fluidity, promotion of neurite extension and inhibition of apoptosis. However, there is little direct evidence that DHA affects synaptic structure in living animals. Here we show that oral supplementation with DHA substantially increases the number of dendritic spines in adult gerbil hippocampus, particularly when animals are co-supplemented with a uridine source, uridine-5'-monophosphate (UMP), which increases brain levels of the rate-limiting phosphatide precursor CTP. The increase in dendritic spines (>30%) is accompanied by parallel increases in membrane phosphatides and in pre- and post-synaptic proteins within the hippocampus. Hence, oral DHA may promote neuronal membrane synthesis to increase the number of synapses, particularly when co-administered with UMP. Our findings provide a possible explanation for the effects of DHA on behavior and also suggest a strategy to treat cognitive disorders resulting from synapse loss.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Hipocampo/ultraestrutura , Uridina Monofosfato/administração & dosagem , Actinas/metabolismo , Administração Oral , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Gerbillinae , Glicerofosfolipídeos/metabolismo , Masculino , Proteínas de Membrana , Modelos Biológicos , Fatores de Tempo
11.
Brain Res ; 1058(1-2): 101-8, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16126180

RESUMO

We examined the biochemical pathways whereby oral uridine-5'-monophosphate (UMP) increases membrane phosphatide synthesis in brains of gerbils. We previously showed that supplementing PC12 cells with uridine caused concentration-related increases in CDP-choline levels, and that this effect was mediated by elevations in intracellular uridine triphosphate (UTP) and cytidine triphosphate (CTP). In the present study, adult gerbils received UMP (1 mmol/kg), a constituent of human breast milk and infant formulas, by gavage, and plasma samples and brains were collected for assay between 5 min and 8 h thereafter. Thirty minutes after gavage, plasma uridine levels were increased from 6.6 +/- 0.58 to 32.7 +/- 1.85 microM (P < 0.001), and brain uridine from 22.6 +/- 2.9 to 89.1 +/- 8.82 pmol/mg tissue (P < 0.001). UMP also significantly increased plasma and brain cytidine levels; however, both basally and following UMP, these levels were much lower than those of uridine. Brain UTP, CTP, and CDP-choline were all elevated 15 min after UMP (from 254 +/- 31.9 to 417 +/- 50.2, [P < 0.05]; 56.8 +/- 1.8 to 71.7 +/- 1.8, [P < 0.001]; and 11.3 +/- 0.5 to 16.4 +/- 1, [P < 0.001] pmol/mg tissue, respectively), returning to basal levels after 20 and 30 min. The smallest UMP dose that significantly increased brain CDP-choline was 0.05 mmol/kg. These results show that oral UMP, a uridine source, enhances the synthesis of CDP-choline, the immediate precursor of PC, in gerbil brain.


Assuntos
Encéfalo/efeitos dos fármacos , Citidina Difosfato Colina/biossíntese , Regulação para Cima/efeitos dos fármacos , Uridina Monofosfato/farmacologia , Administração Oral , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Gerbillinae , Masculino , Lipídeos de Membrana/biossíntese , Fosfatidilcolinas/biossíntese , Regulação para Cima/fisiologia , Uridina/sangue , Uridina Monofosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA