Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33735112

RESUMO

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Assuntos
Aminoglicosídeos/efeitos adversos , Cóclea/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Animais , Cóclea/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Gentamicinas/efeitos adversos , Gentamicinas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Fator de Transcrição Associado à Microftalmia/genética , Neomicina/efeitos adversos , Técnicas de Cultura de Órgãos , Ototoxicidade/etiologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Sci Rep ; 9(1): 14996, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628383

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis bacteria, is a leading infectious cause of mortality worldwide, including in Pakistan. Drug resistant M. tuberculosis is an emerging threat for TB control, making it important to detect the underlying genetic mutations, and thereby inform treatment decision making and prevent transmission. Whole genome sequencing has emerged as the new diagnostic to reliably predict drug resistance within a clinically relevant time frame, and its deployment will have the greatest impact on TB control in highly endemic regions. To evaluate the mutations leading to drug resistance and to assess for evidence of the transmission of resistant strains, 81 M. tuberculosis samples from Khyber Pakhtunkhwa province (North West Pakistan) were subjected to whole genome sequencing and standard drug susceptibility testing for eleven anti-TB drugs. We found the majority of M. tuberculosis isolates were the CAS/Delhi strain-type (lineage 3; n = 57; 70.4%) and multi-drug resistant (MDR; n = 62; 76.5%). The most frequent resistance mutations were observed in the katG and rpoB genes, conferring resistance to isoniazid and rifampicin respectively. Mutations were also observed in genes conferring resistance to other first and second-line drugs, including in pncA (pyrazinamide), embB (ethambutol), gyrA (fluoroquinolones), rrs (aminoglycosides), rpsL, rrs and giB (streptomycin) loci. Whilst the majority of mutations have been reported in global datasets, we describe unreported putative resistance markers in katG, ethA (ethionamide), gyrA and gyrB (fluoroquinolones), and pncA. Analysis of the mutations revealed that acquisition of rifampicin resistance often preceded isoniazid in our isolates. We also observed a high proportion (17.6%) of pre-MDR isolates with fluoroquinolone resistance markers, potentially due to unregulated anti-TB drug use. Our isolates were compared to previously sequenced strains from Pakistan in a combined phylogenetic tree analysis. The presence of lineage 2 was only observed in our isolates. Using a cut-off of less than ten genome-wide mutation differences between isolates, a transmission analysis revealed 18 M. tuberculosis isolates clustering within eight networks, thereby providing evidence of drug-resistant TB transmission in the Khyber Pakhtunkhwa province. Overall, we have demonstrated that drug-resistant TB isolates are circulating and transmitted in North West Pakistan. Further, we have shown the usefulness of whole genome sequencing as a diagnostic tool for characterizing M. tuberculosis isolates, which will assist future epidemiological studies and disease control activities in Pakistan.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Sequência de Bases , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Paquistão/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Adulto Jovem
3.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263311

RESUMO

Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Aminoglicosídeos/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Gentamicinas/antagonistas & inibidores , Gentamicinas/farmacologia , Canais Iônicos/efeitos dos fármacos , Masculino , Camundongos , Técnicas de Cultura de Tecidos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA