Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Sci Monit ; 23: 4241-4251, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865235

RESUMO

BACKGROUND This study aimed to evaluate the effects of electro-acupuncture (EA) on neuroplasticity associated with the expressions of neurotrophic factors (NTFs) and their receptors in rats subjected to spinal cord transection (SCT). MATERIAL AND METHODS A total of 144 rats were randomly divided into 3 groups (n=48 per group): sham-operated group, SCT group, and EA (electro-acupuncture) group. Rats in SCT and EA groups received spinal cord transection at T10-T11 vertebral levels. Then, EA group rats received EA treatment. Reverse transcription polymerase chain reaction was used to detect NTFs and receptors at the mRNA level. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect the expression of NTFs and their receptors. Basso, Beattie, Bresnahan (BBB) scores and cortical somato-sensory evoked potentials (CSEP) were evaluated to assess the recovery of motor and sensory functions. We also measured BDA (Biotinylated dextran amine) axonal tracing, CGRP (Calcitonin gene-related peptide), GAP-43 (Growth-associated protein), and synaptophysin immunohistochemistry (IHC). RESULTS EA treatment led to obvious improvement in hindlimb locomotor and sensory functions. CNTF, FGF-2, and TrkB mRNA were significantly upregulated, while NGF, PDGF, TGF-b1, IGF-1, TrkA, and TrkC mRNA were concomitantly downregulated in the caudal spinal segment (CSS) following EA. Immunohistochemistry demonstrated an increased number of CGRP fibers, GAP-43, and synaptophysin profiles in the CSS in the EA rats. CONCLUSIONS EA may promote the recovery of neuroplasticity in rats subjected to SCT. This could be attributed to the systematic regulation of NTFs and their receptors after EA.


Assuntos
Eletroacupuntura/métodos , Plasticidade Neuronal/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Animais , Fatores de Crescimento Neural/análise , Fatores de Crescimento Neural/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/genética , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
2.
Mol Inform ; 35(6-7): 262-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27492240

RESUMO

Rho-kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho-kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self-inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho-kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho-kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho-kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho-kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self-competitors to disrupt Rho-kinase dimerization in CM.


Assuntos
Inibidores de Proteínas Quinases/química , Quinases Associadas a rho/química , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência , Malformações Arteriovenosas Intracranianas/tratamento farmacológico , Malformações Arteriovenosas Intracranianas/enzimologia , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA