Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Commun Biol ; 6(1): 1001, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783835

RESUMO

Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.


Assuntos
Acer , Hipóxia-Isquemia Encefálica , Ratos , Animais , Neuroproteção , Altitude , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/complicações , Multiômica , Extratos Vegetais/farmacologia , Isquemia
2.
Int J Biol Macromol ; 253(Pt 1): 126582, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652332

RESUMO

Adverse environments, especially drought conditions, deeply influence plant development and growth in all aspects, and the yield and quality of tea plants are largely dependent on favorable growth conditions. Although tea plant responses to drought stress (DS) have been studied, a comprehensive multilayer epigenetic, transcriptomic, and proteomic investigation of how tea responds to DS is lacking. In this study, we generated DNA methylome, transcriptome, proteome, and phosphoproteome data to explore multiple regulatory landscapes in the tea plant response to DS. An integrated multiomics analysis revealed the response of tea plants to DS at multiple regulatory levels. Furthermore, a set of DS-responsive genes involved in photosynthesis, transmembrane transportation, phytohormone metabolism and signaling, secondary metabolite pathways, transcription factors, protein kinases, posttranslational and epigenetic modification, and other key stress-responsive genes were identified for further functional investigation. These results reveal the multilayer regulatory landscape of the tea plant response to DS and provide insight into the mechanisms of these DS responses.


Assuntos
Camellia sinensis , Secas , Proteômica , Regulação da Expressão Gênica de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Food Funct ; 14(14): 6610-6623, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395364

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of acute neonatal death and chronic neurological damage, and severe HIE can have secondary sequelae such as cognitive impairment and cerebral palsy, for which effective interventions are lacking. In this study, we found that continuous 30-day intake of Acer truncatum Bunge seed oil (ASO) reduced brain damage and improved cognitive ability in HIE rats. Using lipidomic strategies, we observed that HIE rats had decreased unsaturated fatty acids and increased lysophospholipids in the brain. However, after 30 days of ASO treatment, phospholipids, plasmalogens, and unsaturated fatty acids increased, while lysophospholipids and oxidized glycerophospholipids decreased in both serum and the brain. Enrichment analysis showed that ASO intake mainly affected sphingolipid metabolism, fat digestion and absorption, glycerolipid metabolism and glycerophospholipid metabolic pathways in serum and the brain. Cluster, correlation, and confirmatory factor analyses showed that cognitive improvement after ASO administration was attributed to increased essential phospholipids and ω3/6/9 fatty acids, coupled with decreased oxidized glycerophospholipids in HIE rats. Our findings indicate that ASO has the potential to be developed as an effective food supplement for ischemic hypoxic newborns.


Assuntos
Acer , Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Lipidômica , Cognição , Glicerofosfolipídeos , Óleos de Plantas/farmacologia
4.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373207

RESUMO

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.


Assuntos
Ácido Ascórbico , Camellia sinensis , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Chá/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Temperatura Baixa
5.
BMC Plant Biol ; 20(1): 98, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131737

RESUMO

BACKGROUND: Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS: In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS: Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Transcriptoma , Camellia sinensis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/genética
6.
Plant Cell Rep ; 39(4): 553-565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060604

RESUMO

KEY MESSAGE: Overexpression of the tea plant gene CsbZIP18 in Arabidopsis impaired freezing tolerance, and CsbZIP18 is a negative regulator of ABA signaling and cold stress. Basic region/leucine zipper (bZIP) transcription factors play important roles in the abscisic acid (ABA) signaling pathway and abiotic stress response in plants. However, few bZIP transcription factors have been functionally characterized in tea plants (Camellia sinensis). In this study, a bZIP transcription factor, CsbZIP18, was found to be strongly induced by natural cold acclimation, and the expression level of CsbZIP18 was lower in cold-resistant cultivars than in cold-susceptible cultivars. Compared with wild-type (WT) plants, Arabidopsis plants constitutively overexpressing CsbZIP18 exhibited decreased sensitivity to ABA, increased levels of relative electrolyte leakage (REL) and reduced values of maximal quantum efficiency of photosystem II (Fv/Fm) under freezing conditions. The expression of ABA homeostasis- and signal transduction-related genes and abiotic stress-inducible genes, such as RD22, RD26 and RAB18, was suppressed in overexpression lines under freezing conditions. However, there was no significant change in the expression of genes involved in the C-repeat binding factor (CBF)-mediated ABA-independent pathway between WT and CsbZIP18 overexpression plants. These results indicate that CsbZIP18 is a negative regulator of freezing tolerance via an ABA-dependent pathway.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Camellia sinensis/genética , Resposta ao Choque Frio , Congelamento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Aclimatação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Camellia sinensis/metabolismo , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteostase/efeitos dos fármacos , Proteostase/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Biomolecules ; 10(2)2020 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079100

RESUMO

Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Tricomas/metabolismo , Camellia sinensis/genética , Catequina/genética , Catequina/metabolismo , Flavonoides/química , Flavonoides/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Chá , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Tricomas/química , Tricomas/genética
8.
J Rehabil Med ; 51(8): 616-620, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31198974

RESUMO

OBJECTIVE: To investigate the effects of normocapnic hyperpnoea training on pulmonary function and patient-reported outcomes in chronic spinal cord injury. DESIGN: Single-centre randomized controlled trial. PATIENTS: Eighteen patients with spinal cord injury > 24 months post-injury and without regular respiratory muscle training prior to the study were included prospectively. METHODS: Patients were randomly assigned to either normocapnic hyperpnoea or control groups. The normocapnic hyperpnoea group patients performed training 15-20 min per day, 5 times a week for 4 weeks. The patients hyperventilated through partial re-breathing of ventilated air. The control group received no respiratory muscle training. Other rehabilitative programmes were performed identically in both groups. Lung function testing was performed in the sitting position prior to and after the study. Patient-reported outcomes were assessed using the Patient Health Questionnaire-9, St George's Respiratory Questionnaire, Chronic Obstructive Pulmonary Disease Assessment Test and Borg scores. RESULTS: Significant differences were found in the improvement ratio between the normocapnic hyperpnoea and control groups for all investigated parameters, except total lung capacity and diffusing capacity of the lung for carbon monoxide. CONCLUSION: Normocapnic hyperpnoea training may reduce the incidence of respiratory symptoms, improve pulmonary function and quality of life, and reduce depression in patients with chronic spinal cord injury, regardless of their neurological level of injury, even at more than 24 months after injury.


Assuntos
Exercícios Respiratórios/métodos , Treino Aeróbico/métodos , Qualidade de Vida/psicologia , Músculos Respiratórios/fisiopatologia , Traumatismos da Medula Espinal/terapia , Adulto , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
9.
Planta ; 250(1): 281-298, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025197

RESUMO

MAIN CONCLUSION: The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.


Assuntos
Camellia sinensis/enzimologia , Regulação da Expressão Gênica de Plantas , alfa-Amilases/metabolismo , beta-Amilase/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Secas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , alfa-Amilases/genética , beta-Amilase/genética
10.
BMC Plant Biol ; 18(1): 228, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309330

RESUMO

BACKGROUND: Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS: Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove ß-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS: Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.


Assuntos
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Chá/enzimologia , beta-Frutofuranosidase/metabolismo , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , beta-Frutofuranosidase/genética
11.
J Plant Physiol ; 229: 41-52, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30032044

RESUMO

Trichome (also referred to as 'háo' in tea) is a key feature in both tea products and tea plant (Camellia sinensis) selection breeding. Although trichomes are used as a model for studying cell differentiation and have been well studied in many plant species, the regulation of trichome formation at the molecular level is poorly understood in tea plants. In the present study, the hairy and hairless tea plant cultivars Fudingdabaicha (FDDB) and Rongchunzao (RCZ), respectively, were used to study this mechanism. We characterised tea plant trichomes as unicellular and unbranched structures. High-throughput Illumina sequencing yielded approximately 277.0 million high-quality clean reads from the FDDB and RCZ cultivars. After de novo assembly, 161,444 unigenes were generated, with an average length of 937 bp. Among these unigenes, 81,425 were annotated using public databases, and 55,201 coding sequences and 4004 transcription factors (TFs) were identified. In total, 21,599 differentially expressed genes (DEGs) were identified between RCZ and FDDB, of which 10,785 DEGs were up-regulated and 10,814 DEGs were down-regulated. Genes involved in the DNA replication pathway were significantly enriched. Furthermore, between FDDB and RCZ, DEGs related to TFs, phytohormone signals, and cellulose synthesis were identified, suggesting that certain genes involved in these pathways are crucial for trichome initiation in tea plants. Together, the results of this study provide novel data to improve our understanding of the potential molecular mechanisms of trichome formation and lay a foundation for additional trichome studies in tea plants.


Assuntos
Camellia sinensis/genética , Brotos de Planta/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Tricomas/genética
12.
J Plant Physiol ; 224-225: 144-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29642051

RESUMO

The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.


Assuntos
Camellia sinensis/fisiologia , Temperatura Baixa , Proteínas de Plantas/genética , Transcrição Gênica , Transcriptoma , Camellia sinensis/genética , Eletrólitos/metabolismo , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
13.
Plant Cell Rep ; 37(3): 425-441, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29214380

RESUMO

KEY MESSAGE: Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.


Assuntos
Ácido Abscísico/metabolismo , Camellia sinensis/genética , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Meristema/genética , Dormência de Plantas/genética , Ácido Abscísico/farmacologia , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Especificidade de Órgãos/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estações do Ano , Transdução de Sinais/genética , Chá
14.
Tumour Biol ; 39(7): 1010428317706915, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714368

RESUMO

Bladder cancer is a neoplasm originated from bladder epithelial cells. The therapy for bladder cancer is so far not satisfactory. In this study, we examined the effects of Cordyceps militaris hot water extracts containing cordycepin on human bladder cells. Cordyceps militaris hot water extracts containing cordycepin was used to treat human T24 bladder carcinoma cells, and we found that Cordyceps militaris hot water extracts containing cordycepin decreased T24 cell survival in a dose-dependent manner, which was seemingly mediated by activation of A3 adenosine receptor and the subsequent inactivation of Akt pathways, resulting in increases in cleaved Caspase-3 and apoptosis. Overexpression of A3 adenosine receptor in T24 cells mimicked the effects of Cordyceps militaris hot water extracts, while A3 adenosine receptor depletion abolished the effects of Cordyceps militaris hot water extracts containing cordycepin. Together, these data suggest that Cordyceps militaris hot water extracts containing cordycepin may be a promising treatment for bladder cancer via A3 adenosine receptor activation.


Assuntos
Apoptose/efeitos dos fármacos , Desoxiadenosinas/administração & dosagem , Receptor A3 de Adenosina/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cordyceps/química , Desoxiadenosinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Oncogênica v-akt/genética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
15.
Ann Bot ; 119(7): 1195-1209, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334275

RESUMO

Background and Aims: Basic region/leucine zipper (bZIP) transcription factors play vital roles in the abiotic stress response of plants. However, little is known about the function of bZIP genes in Camellia sinensis . Methods: CsbZIP6 was overexpressed in Arabidopsis thaliana . Effects of CsbZIP6 overexpression on abscisic acid (ABA) sensitivity, freezing tolerance and the expression of cold-responsive genes in arabidopsis were studied. Key Results: CsbZIP6 was induced during cold acclimation in tea plant. Constitutive overexpression of CsbZIP6 in arabidopsis lowered the plants' tolerance to freezing stress and ABA exposure during seedling growth. Compared with wild-type (WT) plants, CsbZIP6 overexpression (OE) lines exhibited increased levels of electrolyte leakage (EL) and malondialdehyde (MDA) contents, and reduced levels of total soluble sugars (TSS) under cold stress conditions. Microarray analysis of transgenic arabidopsis revealed that many differentially expressed genes (DEGs) between OE lines and WT plants could be mapped to 'response to cold' and 'response to water deprivation' terms based on Gene Ontology analysis. Interestingly, CsbZIP6 overexpression repressed most of the cold- and drought-responsive genes as well as starch metabolism under cold stress conditions. Conclusions: The data suggest that CsbZIP6 functions as a negative regulator of the cold stress response in A. thaliana , potentially by down-regulating cold-responsive genes.


Assuntos
Aclimatação/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Camellia sinensis/genética , Congelamento , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
16.
J Plant Physiol ; 209: 95-104, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28013175

RESUMO

Hexokinases (HXKs, EC 2.7.1.1) and fructokinases (FRKs, EC 2.7.1.4) play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes. All of the deduced proteins, except for CsFKR7, possessed putative ATP-binding motifs and a sugar recognition region. These genes exhibited tissue-specific expression patterns, which suggests that they play different roles in the metabolism and development of source and sink tissues in the tea plant. There were variations in CsHXKs and CsFRKs transcript abundance in response to four abiotic stresses: cold, salt, drought and exogenous abscisic acid (ABA). Remarkably, CsHXK3 and CsHXK4 were significantly induced in the leaves and roots under cold conditions, CsHXK1 was apparently up-regulated in the leaves and roots under salt and drought stresses, and CsHXK3 was obviously stimulated in the leaves and roots under short-term treatment with exogenous ABA. These findings demonstrate that CsHXKs play critical roles in response to abiotic stresses in the tea plant. Our research provides a fundamental understanding of the CsHXK and CsFRK genes of the tea plant and important information for the breeding of stress-tolerant tea cultivars.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/genética , Genes de Plantas , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Camellia sinensis/fisiologia , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Cell Rep ; 35(11): 2269-2283, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27538912

RESUMO

KEY MESSAGE: Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Estresse Fisiológico/genética , beta-Frutofuranosidase/genética , Motivos de Aminoácidos , Camellia sinensis/fisiologia , Sequência Conservada/genética , Perfilação da Expressão Gênica , Especificidade de Órgãos/genética , Filogenia , Domínios Proteicos , Fatores de Tempo , beta-Frutofuranosidase/metabolismo
18.
PLoS One ; 11(2): e0148535, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849553

RESUMO

Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108.


Assuntos
Camellia sinensis/genética , Camellia sinensis/microbiologia , Colletotrichum/patogenicidade , Doenças das Plantas/genética , Camellia sinensis/fisiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Proteomics ; 130: 160-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344129

RESUMO

To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.


Assuntos
Clorofila/química , Proteoma/metabolismo , Chá/metabolismo , Transcriptoma , Aminoácidos/química , Camellia sinensis/metabolismo , Carotenoides/química , Catequina/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glutamatos/química , Redes e Vias Metabólicas , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteômica
20.
Plant Physiol Biochem ; 97: 432-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26555901

RESUMO

Basic leucine zipper (bZIP) transcription factors (TFs) play essential roles in regulating stress processes in plants. Despite the economic importance of this woody crop, there is little information about bZIP TFs in tea plants. In this study, 18 bZIP genes were isolated from the tea plant (Camellia sinensis) and named sequentially from CsbZIP1 to CsbZIP18. According to the phylogenetic classification as in Arabidopsis, the CsbZIP genes spanned ten subgroups (Group A, B, C, D, E, F, H, I, S and K) of bZIP TFs. When analyzed for organ specific expression, all CsbZIP genes were found to be ubiquitously expressed in roots, stems, leaves and flowers. Expression analysis of CsbZIP genes in response to four abiotic stresses showed that in leaves, 9, 9, 15 and 11 CsbZIPs have 2-fold greater variation in transcript abundance under cold, exogenous ABA, high salinity and dehydration conditions, respectively. In roots, 5, 12, 14 and 11 CsbZIPs were differentially expressed under conditions of cold, exogenous ABA, high salinity and dehydration stresses. Moreover, CsbZIP genes in Groups F, H, S and K exhibited several folds up-and/or down-regulation against the above four stresses. Notably, CsbZIP18 of group K showed significant up-regulation in response to these same stresses, suggesting a vital functional role in stress response. Together, these findings increase our knowledge of bZIP TFs in the tea plant and suggest the significance of CsbZIP genes in plant abiotic responses.


Assuntos
Camellia sinensis/genética , Camellia sinensis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Camellia sinensis/efeitos dos fármacos , Temperatura Baixa , Sequência Conservada , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA