Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Adv ; 157: 213755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171171

RESUMO

Both bacteria-infection and excessive inflammation delay the wound healing process and even create non-healing wound, thus it is highly desirable to endow the wound dressing with bactericidal and anti-oxidation properties. Herein an antibacterial and antioxidation hydrogel based on Carbomer 940 (CBM) and hydroxypropyl methyl cellulose (HPMC) loaded with tea polyphenols (TP) and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The hydrogel killed 99.9 % of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) at 107 CFU mL-1, and showed strong antioxidation against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) radicals without noticeable cytotoxicity in vitro. The CBM/HPMC/HBPL/TP hydrogel significantly shortened the inflammatory period of the MRSA-infected full-thickness skin wound of rats in vivo, with 2 orders of lower MRSA colonies compared with the blank control, and promoted the wound closure especially at the earlier stage. The inflammation was suppressed and the vascularization was promoted significantly as well, resulting in reduced pro-inflammatory factors including interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and increased anti-inflammatory factors such as interleukin-4 (IL-4) and interleukin-10 (IL-10).


Assuntos
Antioxidantes , Staphylococcus aureus Resistente à Meticilina , Animais , Ratos , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Polilisina/farmacologia , Escherichia coli , Peróxido de Hidrogênio , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Derivados da Hipromelose , Inflamação , Interleucina-1beta , Chá
2.
Bioresour Technol ; 388: 129776, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709152

RESUMO

Herein, a cost-effective method for improving the anaerobic fermentation performance of sewage sludge (SS) is proposed. The highest volatile fatty acids (VFAs) reached up to 5550 mg COD/L with the supplementation of 0.2 g urea/g total suspended solids (TSS). Intensive exploration showed that SS decomposition was profoundly triggered by urea and the free ammonia generated due to the hydrolysis of urea, providing adequately bioaccessible substrates for acidogenic reactions and thus contributing to VFAs formation. Microbial composition analysis indicated that functional bacteria (i.e., Tissierella and Clostridium) associated with VFAs generation were enriched. Moreover, the metabolic activities of functional flora (i.e., membrane transport and fatty acid synthesis) were up-regulated due to the stimulation of urea. In general, the increase in bioavailable organic matter and functional microbes, and thus the increased microbial metabolic activities, improved the efficient production of VFAs. This study could provide a cost-effective approach for resource recovery from SS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA