Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535310

RESUMO

To investigate the difference between rumen-protected niacin (RPN) and rumen-protected nicotinamide (RPM) in the transcriptome of genes relating to the lipid metabolism of the liver of periparturient dairy cows, 10 healthy Chinese Holstein cows were randomly divided into two groups and fed diets supplemented with 18.4 g/d RPN or 18.7 g/d RPM, respectively. The experiment lasted from 14 days before to 21 days after parturition. Liver biopsies were taken 21 days postpartum for transcriptomic sequencing. In addition, human LO2 cells were cultured in a medium containing 1.6 mmol/L of non-esterified fatty acids and 1 mmol/L niacin (NA) or 2 mmol/L nicotinamide (NAM) to verify the expression of the 10 genes selected from the transcriptomic analysis of the liver biopsies. The expression of a total of 9837 genes was detected in the liver biopsies, among which 1210 differentially expressed genes (DEGs) were identified, with 579 upregulated and 631 downregulated genes. These DEGs were associated mainly with lipid metabolism, oxidative stress, and some inflammatory pathways. Gene ontology (GO) enrichment analysis showed that 355 DEGs were enriched in 38 GO terms. The differences in the expression of these DEGs between RPN and RPM were predominantly related to the processes of steroid catabolism, steroid hydroxylase, monooxygenase activity, oxidoreductase activity, hemoglobin binding, and ferric iron binding, which are involved mainly in lipid anabolism and redox processes. The expressions of FADS2, SLC27A6, ARHGAP24, and THRSP in LO2 cells were significantly higher (p < 0.05) while the expressions of BCO2, MARS1, GARS1, S100A12, AGMO, and OSBPL11 were significantly lower (p < 0.05) on the NA treatment compared to the NAM treatment, indicating that NA played a role in liver metabolism by directly regulating fatty acid anabolism and transport, inflammatory factor expression, and oxidative stress; and NAM functioned more as a precursor of nicotinamide adenine dinucleotide (NAD, coenzyme I) and nicotinamide adenine dinucleotide phosphate (NADP, coenzyme II) to participate indirectly in biological processes such as ether lipid metabolism, cholesterol metabolism, energy metabolism, and other processes.

2.
Am J Physiol Cell Physiol ; 318(6): C1284-C1293, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320287

RESUMO

The present study aimed to elucidate the mechanisms by which leucine impacts the secretion of pancreatic enzymes, especially amylase, by studying the proteomics profiles of pancreatic acinar (PA) cells from dairy cows. PA cells, the experimental model, were treated with four concentrations of leucine (0, 0.23, 0.45, and 0.90 mM). The abundance of different proteins in the four leucine treatment groups was detected. Label-free proteomic analysis enabled the identification of 1,906 proteins in all four treatment groups, and 1,350 of these proteins showed common expression across the groups. The primary effects of leucine supplementation were increased (P < 0.05) citrate synthase and ATPase activity, which enlarged the cytosolic ATP pool, and the upregulation of secretory protein 61 (Sec61) expression, which promoted protein secretion. In summary, these results suggest that leucine increases citrate synthase in the TCA cycle and ATPase activity and promotes the Sec signaling pathway to increase the exocrine function of PA cells.


Assuntos
Células Acinares/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Leucina/farmacologia , Pâncreas Exócrino/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , alfa-Amilases/metabolismo , Células Acinares/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Bovinos , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Indústria de Laticínios , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pâncreas Exócrino/enzimologia , Proteômica , Canais de Translocação SEC/metabolismo
3.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 705-712, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30761631

RESUMO

The high rate of protein synthesis in skeletal muscle of dairy calves can benefit their first lactation even lifetime milk yield. Since the rate of protein synthesis is relatively low in the post-absorptive state, the aim of this research was to determine whether leucine supplementation could increase the post-absorptive essential amino acid (EAA) utilization and protein synthesis in the skeletal muscle. Ten male neonatal dairy calves (38 ± 3 kg) were randomly assigned to either the control (CON, no leucine supplementation, n = 5) or supplementation with 1.435 g leucine/L milk (LEU, n = 5). Results showed that leucine significantly increased the length and protein concentration in longissimus dorsi (LD) muscle, whereas it decreased creatinine concentration and glutamic-oxalacetic transaminase (GOT) activity. Compared to the control group, leucine supplementation also reduced the glutamic-pyruvic transaminase (GPT) activity. Supplementation of leucine improved the phosphorylation of mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and substrates ribosomal protein S6 kinase 1 (p70S6K). Supplementation of leucine resulted in increased concentrations of glucose, methionine, threonine, histidine and EAAs and decreased concentration of arginine in serum. Liver glucose concentration was higher and pyranic acid was lower in LEU compared to CON. In conclusion, leucine supplementation can promote post-absorptive EAA utilization and hepatic gluconeogenesis, which contributes to protein synthesis in skeletal muscle of dairy calves.


Assuntos
Aminoácidos Essenciais/metabolismo , Gluconeogênese/fisiologia , Leucina/farmacologia , Fígado/efeitos dos fármacos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Glucose/metabolismo , Fígado/metabolismo , Masculino , Distribuição Aleatória
4.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30563927

RESUMO

This study was investigated the effects of dietary supplementation of leucine and phenylalanine on the development of the gastrointestinal tract and the intestinal digestive enzyme activity in male Holstein dairy calves. Twenty calves with a body weight of 38 ± 3 kg at 1 day of age were randomly divided into four groups: a control group, a leucine group (1.435 g·l-1), a phenylalanine group (0.725 g·l-1), and a mixed amino acid group (1.435 g·l-1 leucine plus 0.725 g·l-1 phenylalanine). The supplementation of leucine decreased the short-circuit current (Isc) of the rumen and duodenum (P<0.01); phenylalanine did not show any influence on the Isc of rumen and duodenum (P>0.05), and also counteracted the Isc reduction caused by leucine. Leucine increased the trypsin activity at the 20% relative site of the small intestine (P<0.05). There was no difference in the activity of α-amylase and of lactase in the small intestinal chyme among four treatments (P>0.05). The trypsin activity in the anterior segment of the small intestine was higher than other segments, whereas the α-amylase activity in the posterior segment of the small intestine was higher than other segments. Leucine can reduce Isc of the rumen and duodenum, improve the development of the gastrointestinal tract, and enhance trypsin activity; phenylalanine could inhibit the effect of leucine in promoting intestinal development.


Assuntos
Trato Gastrointestinal/crescimento & desenvolvimento , Intestino Delgado/enzimologia , Leucina/farmacologia , Fenilalanina/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Suplementos Nutricionais , Trato Gastrointestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Lactase/metabolismo , Masculino , Leite , Tripsina/metabolismo , alfa-Amilases/metabolismo
5.
J Agric Food Chem ; 66(22): 5723-5732, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758980

RESUMO

The objective of this study was to evaluate alterations in serum metabolites of transition dairy cows affected by biotin (BIO) and nicotinamide (NAM) supplementation. A total of 40 multiparous Holsteins were paired and assigned randomly within a block to one of the following four treatments: control (T0), 30 mg/day BIO (TB), 45 g/day NAM (TN), and 30 mg/day BIO + 45 g/day NAM (TB+N). Supplemental BIO and NAM were drenched on cows from 14 days before the expected calving date. Gas chromatography time-of-flight/mass spectrometry was used to analyze serum samples collected from eight cows in every groups at 14 days after calving. In comparison to T0, TB, TN, and TB+N had higher serum glucose concentrations, while non-esterified fatty acid in TN and TB+N and triglyceride in TB+N were lower. Adenosine 5'-triphosphate was significantly increased in TB+N. Both TN and TB+N had higher glutathione and lower reactive oxygen species. Moreover, TB significantly increased inosine and guanosine concentrations, decreased ß-alanine, etc. Certain fatty acid concentrations (including linoleic acid, oleic acid, etc.) were significantly decreased in both TN and TB+N. Some amino acid derivatives (spermidine in TN, putrescine and 4-hydroxyphenylethanol in TB+N, and guanidinosuccinic acid in both TN and TB+N) were affected. Correlation network analysis revealed that the metabolites altered by NAM supplementation were more complicated than those by BIO supplementation. These findings showed that both BIO and NAM supplementation enhanced amino acid metabolism and NAM supplementation altered biosynthesis of unsaturated fatty acid metabolism. The improved oxidative status and glutathione metabolism further indicated the effect of NAM on oxidative stress alleviation.


Assuntos
Biotina/sangue , Bovinos/sangue , Suplementos Nutricionais/análise , Niacinamida/sangue , Aminoácidos/sangue , Animais , Biotina/administração & dosagem , Ácidos Graxos Insaturados/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/sangue , Metabolômica , Niacinamida/administração & dosagem , Soro/química
6.
AMB Express ; 8(1): 65, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29687201

RESUMO

Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.

7.
Environ Sci Pollut Res Int ; 25(1): 181-190, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29116537

RESUMO

Protein quality plays a key role than quantity in growth, production, and reproduction of ruminants. Application of high concentration of dietary crude protein (CP) did not balance the proportion of these limiting amino acids (AA) at duodenal digesta of high producing dairy cow. Thus, dietary supplementation of rumen-protected AA is recommended to sustain the physiological, productive, and reproductive performance of ruminants. Poor metabolism of high CP diets in rumen excretes excessive nitrogen (N) through urine and feces in the environment. This excretion is usually in the form of nitrous oxide, nitric oxide, nitrate, and ammonia. In addition to producing gases like methane, hydrogen carbon dioxide pollutes and has a potentially negative impact on air, soil, and water quality. Data specify that supplementation of top-limiting AA methionine and lysine (Met + Lys) in ruminants' ration is one of the best approaches to enhance the utilization of feed protein and alleviate negative biohazards of CP in ruminants' ration. In conclusion, many in vivo and in vitro studies were reviewed and reported that low dietary CP with supplemental rumen-protected AA (Met + Lys) showed a good ability to reduce N losses or NH3. Also, it helps in declining gases emission and decreasing soil or water contamination without negative impacts on animal performance. Finally, further studies are needed on genetic and molecular basis to explain the impact of Met + Lys supplementation on co-occurrence patterns of microbiome of rumen which shine new light on bacteria, methanogen, and protozoal interaction in ruminants.


Assuntos
Aminoácidos/metabolismo , Ração Animal/normas , Fenômenos Fisiológicos da Nutrição Animal , Proteínas Alimentares/metabolismo , Poluentes Ambientais/análise , Ruminantes/metabolismo , Animais , Ecossistema , Fezes/química , Metano/análise , Nitrogênio/urina , Rúmen/metabolismo
8.
AMB Express ; 7(1): 214, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178045

RESUMO

During the transition period, fatty liver syndrome may be caused in cows undergo negative energy balance, ketosis or hypocalcemia, retained placenta or mastitis problems. During the transition stage, movement of non-esterified fatty acids (NEFA) increases into blood which declines the hepatic metabolism or reproduction and consequently, lactation performance of dairy cows deteriorates. Most of studies documented that, choline is an essential nutrient which plays a key role to decrease fatty liver, NEFA proportion, improve synthesis of phosphatidylcholine, maintain lactation or physiological function and work as anti-oxidant in the transition period of dairy cows. Also, it has a role in the regulation of homocysteine absorption through betaine metabolite which significantly improves plasma α-tocopherol and interaction among choline, methionine and vitamin E. Many studies reported that, supplementation of rumen protected form of choline during transition time is a sustainable method as rumen protected choline (RPC) perform diverse functions like, increase glucose level or energy balance, fertility or milk production, methyl group metabolism, or signaling of cell methionine expansion or methylation reactions, neurotransmitter synthesis or betaine methylation, increase transport of lipids or lipoproteins efficiency and reduce NEFA or triacylglycerol, clinical or sub clinical mastitis and general morbidity in the transition dairy cows. The purpose of this review is that to elucidate the choline importance and functions in the transition period of dairy cows and deal all morbidity during transition or lactation period. Furthermore, further work is needed to conduct more studies on RPC requirements in dairy cows ration under different feeding conditions and also to elucidate the genetic and molecular mechanisms of choline in ruminants industry.

9.
PLoS One ; 11(8): e0160659, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27501393

RESUMO

This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), ß-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows.


Assuntos
Colina/metabolismo , Suplementos Nutricionais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Metionina/metabolismo , Rúmen/imunologia , Rúmen/metabolismo , Animais , Antioxidantes/metabolismo , Bovinos , Feminino , Lactação/fisiologia , Rúmen/crescimento & desenvolvimento
10.
Artigo em Inglês | MEDLINE | ID: mdl-27471592

RESUMO

BACKGROUND: Calcium is a vital mineral and an indispensable component of milk for ruminants. The regulation of transcellular calcium transport by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3, the active form of vitamin D) has been confirmed in humans and rodents, and regulators, including vitamin D receptor (VDR), calcium binding protein D9k (calbindin-D9k), plasma membrane Ca(2+)-ATPase 1b (PMCA1b), PMAC2b and Orai1, are involved in this process. However, it is still unclear whether 1,25-(OH)2D3 could stimulate calcium transport in the ruminant mammary gland. The present trials were conducted to study the effect of 1,25-(OH)2D3 supplementation and energy availability on the expression of genes and proteins related to calcium secretion in goat mammary epithelial cells. METHODS: An in vitro culture method for goat secreting mammary epithelial cells was successfully established. The cells were treated with different doses of 1,25-(OH)2D3 (0, 0.1, 1.0, 10.0 and 100.0 nmol/L) for calcium transport research, followed by a 3-bromopyruvate (3-BrPA, an inhibitor of glucose metabolism) treatment to determine its dependence on glucose availability. Cell proliferation ratios, glucose consumption and enzyme activities were measured with commercial kits, and real-time quantitative polymerase chain reaction (RT-qPCR), and western blots were used to determine the expression of genes and proteins associated with mammary calcium transport in dairy goats, respectively. RESULTS: 1,25-(OH)2D3 promoted cell proliferation and the expression of genes involved in calcium transport in a dose-dependent manner when the concentration did not exceed 10.0 nmol/L. In addition, 100.0 nmol/L 1,25-(OH)2D3 inhibited cell proliferation and the expression of associated genes compared with the 10.0 nmol/L treatment. The inhibition of hexokinase 2 (HK2), a rate-limiting enzyme in glucose metabolism, decreased the expression of PMCA1b and PMCA2b at the mRNA and protein levels as well as the transcription of Orai1, indicating that glucose availability was required for goat mammary calcium transport. The optimal concentration of 1,25-(OH)2D3 that facilitated calcium transport in this study was 10.0 nmol/L. CONCLUSIONS: Supplementation with 1,25-(OH)2D3 influenced cell proliferation and regulated the expression of calcium transport modulators in a dose- and energy-dependent manner, thereby highlighting the role of 1,25-(OH)2D3 as an efficacious regulatory agent that produces calcium-enriched milk in ruminants when a suitable energy status was guaranteed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA