Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 6666836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553429

RESUMO

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/ß-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, ß-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/ß-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Flavonoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/citologia , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Ratos Sprague-Dawley , beta Catenina/metabolismo
2.
Biomed Pharmacother ; 112: 108746, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30970530

RESUMO

Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory disease induced by glucocorticoids. Marrow mesenchymal stem cells (MSCs) differentiate into multiple bone matrix cells and have been used as cell-based therapies to treat ONFH. However, the osteogenesis of MSCs isolated from patients with SONFH is significantly decreased. Polydatin has been widely used in traditional Chinese remedies due to its multiple pharmacological actions. As shown in our previous study, Polydatin protects from oxidative stress and promotes BMSC migration. However, little is known about its role in BMSC (Bone marrow mesenchymal stem cells) osteogenesis; therefore, we further investigated the effect and mechanism of Polydatin in hBMSC osteogenesis. The ability of Polydatin to promote the proliferation and osteogenic differentiation of hBMSCs was determined using the MTT assay, ALP staining and the ALP activity assay. Next, qPCR and western blotting were performed to measure the levels of genes and proteins related to the osteogenesis of hBMSCs. Then, the effect of Polydatin on the nuclear translocation of ß-catenin was determined using immunofluorescence staining. Polydatin (30 µM) markedly enhanced the proliferation of hBMSCs and alkaline phosphatase (ALP) activity. Additionally, it also significantly upregulated the expression of osteogenic genes (Runx2, osteopontin, DLX5, osteocalcin, collagen type I and BMP2) and components of the Wnt signaling pathway (ß-catenin, Lef1, TCF7, c-jun, c-myc and cyclin D). These osteogenesis-potentiating effects of Polydatin were blocked by Noggin, an inhibitor of the BMP pathway, and DKK1, an inhibitor of the Wnt/ß-catenin pathway. However, DKK1 did not affect Polydatin-induced BMP2 expression. Based on our results, Polydatin promotes the proliferation and osteogenic differentiation of hBMSCs through the BMP2-Wnt/ß-catenin signaling pathway.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Estilbenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Osso e Ossos/metabolismo , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA