Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Res ; 204: 82-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30347179

RESUMO

Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials.


Assuntos
Distrofia Muscular de Duchenne/tratamento farmacológico , Taurina/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Ingestão de Líquidos/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/fisiopatologia , Taurina/farmacologia
2.
Pharmacol Res ; 106: 101-113, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26930420

RESUMO

Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the caution needed in translational research, the results show that the parallel assessment can help the identification of best adjuvant therapies.


Assuntos
Acetofenonas/farmacologia , Metilprednisolona/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Taurina/farmacologia , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA