Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 47(3): 711-718, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34667294

RESUMO

Serotonin type-3 receptor (5-HT3R) antagonists show potential as a treatment for cognitive deficits in schizophrenia. CVN058, a brain-penetrant, potent and selective 5-HT3R antagonist, shows efficacy in rodent models of cognition and was well-tolerated in Phase-1 studies. We evaluated the target engagement of CVN058 using mismatch negativity (MMN) in a randomized, double-blind, placebo-controlled, cross-over study. Subjects were stable outpatients with schizophrenia or schizoaffective disorder treated with antipsychotics. Subjects were not permitted to use other 5-HT3R modulators or serotonin reuptake inhibitors. Each subject received a high (150 mg) and low (15 mg or 75 mg) oral dose of CVN058 and placebo in a randomized order across 3 single-day treatment visits separated by at least 1 week. The primary pre-registered outcome was amplitude of duration MMN. Amplitude of other MMN deviants (frequency, intensity, frequency modulation, and location), P50, P300 and auditory steady-state response (ASSR) were exploratory endpoints. 19 of 22 randomized subjects (86.4%) completed the study. Baseline PANSS scores indicated moderate impairment. CVN058 150 mg led to significant improvement vs. placebo on the primary outcome of duration MMN (p = 0.02, Cohen's d = 0.48). A significant treatment effect was also seen in a combined analysis across all MMN deviants (p < 0.001, d = 0.57). Effects on location MMN were independently significant (p < 0.007, d = 0.46). No other significant effects were seen for other deviants, doses or EEG measures. There were no clinically significant treatment related adverse effects. These results show MMN to be a sensitive target engagement biomarker for 5-HT3R, and support the potential utility of CVN058 in correcting the excitatory/inhibitory imbalance in schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Estimulação Acústica , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Estudos Cross-Over , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Esquizofrenia/tratamento farmacológico , Serotonina/farmacologia
2.
Endocrinology ; 149(8): 3926-32, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18450966

RESUMO

The G protein-coupled receptor GPR54, and its peptide ligand kisspeptin (Kp), are crucial for the induction and maintenance of mammalian reproductive function. GPR54 is expressed by GnRH neurons and is directly activated by Kp to stimulate GnRH release. We hypothesized that Kp may be able to act at the GnRH nerve terminals located in the mediobasal hypothalamus (MBH) region. To test this hypothesis, we used organotypic culture of MBH explants challenged with Kp, followed by RIA to detect GnRH released into the cultured medium. Kp stimulation for 1 h induced GnRH release from wild-type male MBH in a dose-dependent manner, whereas this did not occur in MBH explants isolated from Gpr54 null mice. Continuous Kp stimulation caused a sustained GnRH release for 4 h, followed by a decrease of GnRH release, suggesting a desensitization of GPR54 activity. Tetrodotoxin did not alter the Kp-induced GnRH release, indicating that Kp can act directly at the GnRH nerve terminals. To localize Gpr54 expression within the MBH, we used transgenic mice, in which Gpr54 expression is tagged with an IRES-LacZ reporter gene and can be visualized by beta-galactosidase staining. Gpr54 expression was detected outside of the median eminence, in the pars tuberalis. In conclusion, our results provide evidence for a potent stimulating effect of Kp at GnRH nerve terminals in the MBH of the mouse. This study suggests a new point at which Kp can act on GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Oligopeptídeos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Kisspeptina-1 , Tetrodotoxina/farmacologia
3.
N Engl J Med ; 349(17): 1614-27, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14573733

RESUMO

BACKGROUND: Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty. METHODS: We used complementary genetic approaches in humans and in mice. A consanguineous family with members who lacked pubertal development (idiopathic hypogonadotropic hypogonadism) was examined for mutations in a candidate gene, GPR54, which encodes a G protein-coupled receptor. Functional differences between wild-type and mutant GPR54 were examined in vitro. In parallel, a Gpr54-deficient mouse model was created and phenotyped. Responsiveness to exogenous gonadotropin-releasing hormone was assessed in both the humans and the mice. RESULTS: Affected patients in the index pedigree were homozygous for an L148S mutation in GPR54, and an unrelated proband with idiopathic hypogonadotropic hypogonadism was determined to have two separate mutations, R331X and X399R. The in vitro transfection of COS-7 cells with mutant constructs demonstrated a significantly decreased accumulation of inositol phosphate. The patient carrying the compound heterozygous mutations (R331X and X399R) had attenuated secretion of endogenous gonadotropin-releasing hormone and a left-shifted dose-response curve for gonadotropin-releasing hormone as compared with six patients who had idiopathic hypogonadotropic hypogonadism without GPR54 mutations. The Gpr54-deficient mice had isolated hypogonadotropic hypogonadism (small testes in male mice and a delay in vaginal opening and an absence of follicular maturation in female mice), but they showed responsiveness to both exogenous gonadotropins and gonadotropin-releasing hormone and had normal levels of gonadotropin-releasing hormone in the hypothalamus. CONCLUSIONS: Mutations in GPR54, a G protein-coupled receptor gene, cause autosomal recessive idiopathic hypogonadotropic hypogonadism in humans and mice, suggesting that this receptor is essential for normal gonadotropin-releasing hormone physiology and for puberty.


Assuntos
Gonadotropinas/deficiência , Hipogonadismo/genética , Puberdade/genética , Receptores de Neuropeptídeos/genética , Animais , Análise Mutacional de DNA , Feminino , Genes Recessivos , Hormônio Liberador de Gonadotropina/sangue , Gonadotropinas/sangue , Gônadas/patologia , Humanos , Escore Lod , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Mutação , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Receptores de Neuropeptídeos/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Maturidade Sexual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA