Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 51(2): 253-261, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33070421

RESUMO

BACKGROUND: The so-called "thunderstorm asthma" (TA) is an uncommon but dramatic outbreak of asthma attacks occurring during a thunderstorm in the pollen and moulds season. Mechanisms which make the pollen able to enter the deeper airways and provoke severe asthma symptoms are still unclear. OBJECTIVE: To test the hypothesis that sub-pollen particles (SPPs) originated from the rupture by an osmotic shock of pollen associated with TA contain allergens. METHODS: After hydration, SPPs released from pollen grains of grass, pellitory, olive, cypress, ragweed and birch were isolated and determined by microscopy. Allergens were determined by in vitro ELISA inhibition tests indirectly using the sera from 10 polyreactive patients. An inhibition <50% was considered as negative, 50%-75% moderate and > 75% complete. RESULTS: The inhibition experiments showed that the SPPs from birch and cypress were unable to inhibit serum IgE reactivity to Bet v 1 and Cup a 1, respectively. Ragweed SPPs inhibited ragweed pollen extract and Amb a 1 by 75.8 ± 0.11% and 81.2 ± 0.15%, respectively. Olive and pellitory SPPs retained almost the whole IgE-binding capability in all cases tested. Grass SPPs inhibited 32 ± 0.06% of Lolium perenne Lol p 1 and 65% of Phleum pratense extracts, but results were highly variable for individual allergens (97.5%-0.03% for Phl p 2, 45.3 ± 0.12% for Phl p 5, 24.7 ± 0.22% for Phl p 6, and 38.3 ± 0.2% for Phl p 1). CONCLUSIONS: Inhibition experiments confirm the hypothesis that SSPs obtained after the osmotic shock of pollen involved in TA, namely grass, pellitory and olive tree pollen, contain allergens and therefore they can induce severe asthma attacks during thunderstorms.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Umidade , Pressão Osmótica/fisiologia , Pólen/fisiologia , Chuva , Rinite Alérgica Sazonal/imunologia , Alérgenos/química , Alnus/imunologia , Ambrosia/imunologia , Asma/epidemiologia , Asma/etiologia , Betula/imunologia , Cupressus/imunologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Testes Imunológicos , Olea/imunologia , Parietaria/imunologia , Phleum/imunologia , Poaceae/imunologia , Pólen/química , Pólen/imunologia , Rinite Alérgica Sazonal/etiologia
2.
BMC Plant Biol ; 19(1): 155, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023241

RESUMO

BACKGROUND: Ambrosia artemisiifolia L. is one of the most important sources of allergenic pollen in many regions of the world. Its health impact increased over the last decades and is expected to further increase in consequence of climate change. However little information is available on the specific role played by temperature on allergy rising. The aim of this work was to evaluate the effect of temperature on A. artemisiifolia growth, flowering and pollen allergenicity, the major plant functional traits influencing the prevalence and severity of pollinosis. RESULTS: Plants were grown in controlled conditions at three thermal regimes: "Low" (LT: 18-14 °C light-dark), "Intermediate" (IT: 24-20 °C light-dark) and "High" (HT: 30-26 °C light-dark). During plant development, plant vegetative and reproductive morpho-functional traits were measured and, at the end of plant life-cycle, mature pollen was collected and analyzed for its allergenic properties by slot blot, 1D- and 2D-western blot (by using a pool of sera from ragweed-allergic patients) and liquid chromatography-tandem mass spectrometry. A. artemisiifolia showed a great development plasticity leading to a broad temperature tolerance. Shoot architecture, growth rate, number of male inflorescence and pollen allergenicity were temperature-responsive traits. Pollen allergenicity increased in parallel with temperature and differences were related to allergen synthesis and Amb a 1-IgE-binding. Flavonoids whose concentration in pollen decreased with the increase of temperature, were recognized as the cause of the negligible Amb a 1-IgE binding in LT pollen. CONCLUSIONS: Results show that temperature governs plant development and pollen allergenicity influencing the temporal and spatial magnitude of subject exposure to allergens.


Assuntos
Ambrosia/fisiologia , Pólen/efeitos adversos , Característica Quantitativa Herdável , Temperatura , Alérgenos/imunologia , Flavonoides/análise , Germinação , Imunoglobulina E/metabolismo , Desenvolvimento Vegetal , Pólen/imunologia , Ligação Proteica , Rutina/metabolismo , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA