Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 9(11): e113366, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412338

RESUMO

BACKGROUND AND AIMS: L-glutamine is an efficacious glucagon-like peptide (GLP)-1 secretagogue in vitro. When administered with a meal, glutamine increases GLP-1 and insulin excursions and reduces postprandial glycaemia in type 2 diabetes patients. The aim of the study was to assess the efficacy and safety of daily glutamine supplementation with or without the dipeptidyl peptidase (DPP)-4 inhibitor sitagliptin in well-controlled type 2 diabetes patients. METHODS: Type 2 diabetes patients treated with metformin (n = 13, 9 men) with baseline glycated hemoglobin (HbA1c) 7.1±0.3% (54±4 mmol/mol) received glutamine (15 g bd)+ sitagliptin (100 mg/d) or glutamine (15 g bd) + placebo for 4 weeks in a randomized crossover study. RESULTS: HbA1c (P = 0.007) and fructosamine (P = 0.02) decreased modestly, without significant time-treatment interactions (both P = 0.4). Blood urea increased (P<0.001) without a significant time-treatment interaction (P = 0.8), but creatinine and estimated glomerular filtration rate (eGFR) were unchanged (P≥0.5). Red blood cells, hemoglobin, hematocrit, and albumin modestly decreased (P≤0.02), without significant time-treatment interactions (P≥0.4). Body weight and plasma electrolytes remained unchanged (P≥0.2). CONCLUSIONS: Daily oral supplementation of glutamine with or without sitagliptin for 4 weeks decreased glycaemia in well-controlled type 2 diabetes patients, but was also associated with mild plasma volume expansion. TRIAL REGISTRATION: ClincalTrials.gov NCT00673894.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutamina/administração & dosagem , Glutamina/efeitos adversos , Hipoglicemiantes/administração & dosagem , Fosfato de Sitagliptina/administração & dosagem , Administração Oral , Idoso , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Esquema de Medicação , Quimioterapia Combinada , Feminino , Glutamina/uso terapêutico , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/administração & dosagem , Metformina/uso terapêutico , Pessoa de Meia-Idade , Volume Plasmático/efeitos dos fármacos , Fosfato de Sitagliptina/uso terapêutico , Resultado do Tratamento
2.
Brain ; 137(Pt 1): 44-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253200

RESUMO

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Assuntos
Paralisia Bulbar Progressiva/genética , Perda Auditiva Neurossensorial/genética , Mutação/genética , Receptores Acoplados a Proteínas G/genética , Adolescente , Encéfalo/patologia , Paralisia Bulbar Progressiva/tratamento farmacológico , Carnitina/análogos & derivados , Carnitina/sangue , Criança , Pré-Escolar , Exoma/genética , Feminino , Genótipo , Perda Auditiva Neurossensorial/tratamento farmacológico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Análise em Microsséries , Doença dos Neurônios Motores/fisiopatologia , Exame Neurológico , Linhagem , RNA/biossíntese , RNA/genética , Riboflavina/uso terapêutico , Análise de Sequência de DNA , Nervo Sural/patologia , Vitaminas/uso terapêutico , Adulto Jovem
3.
Hum Mutat ; 32(1): E1976-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21089064

RESUMO

Riboflavin, or vitamin B2, is a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) molecules, required in biological oxidation-reduction reactions. We previously reported a case of a newborn female who had clinical and biochemical features of multiple acyl-CoA dehydrogenation deficiency (MADD), which was corrected by riboflavin supplementation. The mother was then found to be persistently riboflavin deficient, suggesting that a possible genetic defect in riboflavin transport in the mother was the cause of the transient MADD seen in the infant. Two recently-identified riboflavin transporters G protein-coupled receptor 172B (GPR172B or RFT1) and riboflavin transporter 2 (C20orf54 or RFT2) were screened for mutations. Two missense sequence variations, c.209A>G [p.Q70R] and c.886G>A [p.V296M] were found in GPR172B. In vitro functional studies of both missense variations showed that riboflavin transport was unaffected by these variations. Quantitative real-time PCR revealed a de novo deletion in GPR172B spanning exons 2 and 3 in one allele from the mother. We postulate that haploinsufficiency of this riboflavin transporter causes mild riboflavin deficiency, and when coupled with nutritional riboflavin deficiency in pregnancy, resulted in the transient riboflavin-responsive disease seen in her newborn infant. This is the first report of a genetic defect in riboflavin transport in humans.


Assuntos
Proteínas de Membrana Transportadoras/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/etiologia , Receptores Acoplados a Proteínas G/genética , Deficiência de Riboflavina/complicações , Deficiência de Riboflavina/genética , Adulto , Variações do Número de Cópias de DNA , Éxons , Feminino , Deleção de Genes , Genótipo , Células HEK293 , Humanos , Recém-Nascido , Masculino , Linhagem
4.
Mol Ther ; 17(8): 1340-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19384294

RESUMO

Ornithine transcarbamylase (OTC) deficiency, the most common urea cycle disorder, is associated with severe hyperammonemia accompanied by a high risk of neurological damage and death in patients presenting with the neonatal-onset form. Contemporary therapies, including liver transplantation, remain inadequate with considerable morbidity, justifying vigorous investigation of alternate therapies. Clinical evidence suggests that as little as 3% normal enzyme activity is sufficient to ameliorate the severe neonatal phenotype, making OTC deficiency an ideal model for the development of liver-targeted gene therapy. In this study, we investigated metabolic correction in neonatal and adult male OTC-deficient Spf(ash) mice following adeno-associated virus (AAV)2/8-mediated delivery of the murine OTC complementary DNA under the transcriptional control of a liver-specific promoter. Substantially supraphysiological levels of OTC enzymatic activity were readily achieved in both adult and neonatal mice following a single intraperitoneal (i.p.) injection, with metabolic correction in adults being robust and life-long. In the neonates, however, full metabolic correction was transient, although modest levels of OTC expression persisted into adulthood. Although not directly testable in Spf(ash) mice, these levels were theoretically sufficient to prevent hyperammonemia in a null phenotype. This loss of expression in the neonatal liver is the consequence of hepatocellular proliferation and presents an added challenge to human therapy.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Animais , Animais Recém-Nascidos , Western Blotting , Linhagem Celular , DNA Complementar/genética , Feminino , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Ornitina Carbamoiltransferase/fisiologia , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/urina , Ácido Orótico/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA