Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 9(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053582

RESUMO

Zinc is an essential component of the insulin granule and it possibly modulates insulin secretion and signaling. Since insulin resistance is a hallmark in the development of type 2 diabetes mellitus, this study aimed at investigating if zinc supplementation is able to improve glucose tolerance and ß-cell function in a model of insulin resistance. Male C57BL/6 mice were distributed in four groups according to the diet: normal fat (NF); normal fat supplemented with ZnCl2 (NFZ); high-fat (HF); and, high-fat chow supplemented with ZnCl2 (HFZ). Intraperitoneal glucose (ipGTT) and insulin (ipITT) tolerance, glycemia, insulinemia, HOMA-IR, and HOMA-ß were determined after 15 weeks in each diet. Glucose-stimulated insulin secretion (GSIS) was investigated in isolated islets. The insulin effect on glucose uptake, metabolism, and signaling was investigated in soleus muscle. ZnCl2 did not affect body mass or insulin sensitivity as assessed by ipITT, HOMA-IR, muscle glucose metabolism, and Akt and GSK3-ß phosphorylation. However, glucose tolerance, HOMA-ß, and GSIS were significantly improved by ZnCl2 supplementation. Therefore, ZnCl2 supplementation improves glucose homeostasis in high fat-fed mice by a mechanism that enhances ß-cell function, rather than whole-body or muscle insulin sensitivity.


Assuntos
Glicemia/metabolismo , Dieta Hiperlipídica , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Cloretos/administração & dosagem , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Hemoglobinas Glicadas/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Zinco/sangue , Compostos de Zinco/administração & dosagem
2.
Eur J Pharmacol ; 791: 780-787, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27717730

RESUMO

Maternal hyperglycemia can result in defects in glucose metabolism and pancreatic ß-cell function in offspring. The purpose of this study was to evaluate the impact of maternal diabetes mellitus on pancreatic islets, muscle and adipose tissue of the offspring, with or without oral l-Arginine supplementation. The induction of diabetes was performed using streptozotocin (60mg/kg). Animals were studied at 3 months of age and treatment (sucrose or l-Arginine) was administered from weaning. We observed that l-Arg improved insulin sensitivity in the offspring of diabetic mothers (DA), reflected by higher insulin-induced phosphorylation of Akt in muscle and adipose tissue. Insulin resistance is associated with increased oxidative stress and the NADPH oxidase enzyme plays an important role. Our results showed that the augmented interaction of p47PHOX with gp91PHOX subunits of the enzyme in skeletal muscle tissue in the offspring of diabetic rats (DV) was abolished after l-Arg treatment in DA rats. Maternal diabetes caused alterations in the islet functionality of the offspring leading to increased insulin secretion at both low (2.8mM) and high (16.7mM) concentrations of glucose. l-Arg reverses this effect, suggesting that it may be an important modulator in the insulin secretory process. In addition it is possible that l-Arg exerts its effects directly onto essential molecules for the maintenance and survival of pancreatic islets, decreasing protein expression of p47PHOX while increasing Akt phosphorylation and PDX-1 expression. The mechanism by which l-Arg exerts its beneficial effects may involve nitric oxide bioavailability since treatment restored NO levels in the pancreas.


Assuntos
Arginina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Proteínas de Homeodomínio/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Glicoproteínas de Membrana/metabolismo , Mães , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
FEBS Open Bio ; 4: 141-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24490138

RESUMO

Dehydroepiandrosterone (DHEA) and the dehydroepiandrosterone sulfate (DHEA-S) are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX) female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS) and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

4.
J Pineal Res ; 55(2): 156-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23565768

RESUMO

In aged rats, insulin signaling pathway (ISP) is impaired in tissues that play a pivotal role in glucose homeostasis, such as liver, skeletal muscle, and adipose tissue. Moreover, the aging process is also associated with obesity and reduction in melatonin synthesis from the pineal gland and other organs. The aim of the present work was to evaluate, in male old obese Wistar rats, the effect of melatonin supplementation in the ISP, analyzing the total protein amount and the phosphorylated status (immunoprecipitation and immunoblotting) of the insulin cascade components in the rat hypothalamus, liver, skeletal muscle, and periepididymal adipose tissue. Melatonin was administered in the drinking water for 8- and 12 wk during the night period. Food and water intake and fasting blood glucose remained unchanged. The insulin sensitivity presented a 2.1-fold increase both after 8- and 12 wk of melatonin supplementation. Animals supplemented with melatonin for 12 wk also presented a reduction in body mass. The acute insulin-induced phosphorylation of the analyzed ISP proteins increased 1.3- and 2.3-fold after 8- and 12 wk of melatonin supplementation. The total protein content of the insulin receptor (IR) and the IR substrates (IRS-1, 2) remained unchanged in all investigated tissues, except for the 2-fold increase in the total amount of IRS-1 in the periepididymal adipose tissue. Therefore, the known age-related melatonin synthesis reduction may also be involved in the development of insulin resistance and the adequate supplementation could be an important alternative for the prevention of insulin signaling impairment in aged organisms.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/uso terapêutico , Resistência à Insulina , Melatonina/uso terapêutico , Obesidade/metabolismo , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Transtornos do Metabolismo de Glucose/prevenção & controle , Masculino , Melatonina/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA