Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflammation ; 43(3): 985-993, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32382842

RESUMO

To verify the influence of ozone (O3) therapy on an experimental model of rheumatoid arthritis (RA), 30 male Wistar rats were randomly allocated to 2 groups, control (C) and treatment (T), and subdivided into control (C12, C48, C72) and treatment (T12, T48, T72) groups. RA was induced by administration of collagenase plus complete Freud's adjuvant in the knee joint region. The animals were treated with ozone therapy (1 ml O3 injection in the knee i.a.) according to group assignment: T12, 2 h; T48, 2 and 24 h; and T72, 2, 24, and 48 h post-RA induction. The different animal groups were euthanized 12, 24, or 72 h post-RA induction, respectively. Synovial exudate levels of IL-10, IL-12p70, TNF-α, INF-γ, and MCP-1 were assessed by flow cytometry, and histopathological analysis of the knee cartilage was conducted. Ozone therapy effectively decreases inflammation, reducing IL-12 and TNF-α, and increasing IL10. O3 did not statistically affect INF-γ or MCP-1 levels. More expressive results were obtained with group T72, i.e., treated 2, 24, and 48 h post-RA induction, which indicates that longer-term ozone treatment is more effective than a single acute application. Ozone therapy effectively reduced inflammation with effects, at least in part, mediated through reduction of pro-inflammatory cytokines and activation of IL-10 anti-inflammatory cytokine.


Assuntos
Anti-Inflamatórios/administração & dosagem , Artrite Experimental/metabolismo , Artrite Experimental/terapia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Ozônio/administração & dosagem , Animais , Artrite Experimental/induzido quimicamente , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Masculino , Oxidantes Fotoquímicos/administração & dosagem , Ratos , Ratos Wistar
2.
Lasers Med Sci ; 34(8): 1619-1625, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30826952

RESUMO

Cerebrovascular accidents (CVAs), commonly known as strokes, can damage the brain through vascular injuries caused by either blood vessel blockages (ischemic stroke) or ruptures (hemorrhagic stroke) which disrupt regular brain blood supply and can cause severe damage to the individual. The objective of the present study was to evaluate the effects of photobiomodulation with a light-emitting diode (LED) device (904 nm, 110 mW, 7 J/cm2) on neurogenesis, muscle resistance, and motor behavior in animals submitted to an experimental model of hemiplegia. The sample consisted of 30 Wistar rats, divided into two groups: control group (GC) and 904-nm LED-treated group (TG). All animals underwent stereotactic surgery for electrode implant and subsequent electrolytic injury to induce an ischemic stroke. TG was subjected to daily LED irradiation (904 nm, 110 mW, 7 J/cm2) for 63 s. Suspension test results indicate an improvement of TG muscle resistance when compared with baseline evaluation (BLT); a reduction in open-field freezing time and the number of fecal bolus pellets suggest diminished anxiety induced by 904-nm LED treatment on treatment days 7 and 21 (TG7 and TG21) compared with the baseline results; and lastly, histological analysis showed important signs of neurogenesis in TG in comparison to CG, especially on treatment days 7 and 21 (TG7 and TG21). In conclusion, the present study suggests that 904-nm LED irradiation may beneficially affect neurogenesis, muscle resistance, and animal motor behavior following ischemic CVA.


Assuntos
Encéfalo/patologia , Encéfalo/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Acidente Vascular Cerebral/radioterapia , Animais , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Masculino , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA