Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Prod Res ; 37(4): 603-607, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35437076

RESUMO

Polymeric films containing pomegranate peel extract (PPE) can act as a drug-delivery platform for topical treatment of candidiasis. The composition, mechanical resistance, and in vitro antifungal activity of a polymeric film containing PPE at 1.25 mg.mL-1 were investigated. Films were prepared using a solvent casting technique. The incorporation of PPE in the polymeric matrix gave rise to homogeneous, smooth, shiny, and yellowish-brown films. FTIR spectra of the film containing PPE showed differences without compromising the stability of the extract and the matrix. SEM analysis showed the existence of interruptions in the continuity of the films with extract, which promoted a reduction in the mechanical parameters without significantly changing the tensile strength and elongation at break. Films showed adequate mechanical properties and antifungal activity against Candida albicans, C. glabrata, C. krusei and C. tropicalis.


Assuntos
Candidíase , Punica granatum , Antifúngicos/farmacologia , Candida albicans , Polímeros , Extratos Vegetais/farmacologia , Candidíase/tratamento farmacológico
2.
Mater Sci Eng C Mater Biol Appl ; 109: 110643, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229007

RESUMO

Chronic wounds constitute a serious public health problem, and developing pharmaceutical dosage forms to ensure patient comfort and safety, as well as optimizing treatment effectiveness, are of great interest in the pharmaceutical, medical and biomaterial fields. In this work, the preparation of films based on blends of poly(vinyl alcohol), starch and poly(acrylic acid), polymers widely used as pharmaceutical excipients, and pomegranate peel extract (PPE), a bioactive compound with antimicrobial and healing activities relevant to the use as a bioactive wound dressing, was proposed. Initially, the minimum inhibitory concentration (MIC) of the PPE was investigated by an in vitro method. Then, the best concentration of the PPE to be used to prepare the films was researched using an antimicrobial susceptibility test with the disc diffusion method. The microbiological assay was performed in films prepared by the solvent casting method in the presence of two concentrations of PPE: 1.25% w/v and 2.5% w/v. Films containing the lower PPE concentration showed antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis, with a difference that was not considered statistically significant when compared to the higher concentration of the extract. Therefore, the films prepared with the lower proportion of PPE (1.25% w/v) were considered for the other studies. The miscibility and stability of the extract in the films were investigated by thermal analysis. Parameters that determine the barrier properties of the films were also investigated by complementary techniques. Finally, in vitro biological tests were performed for safety evaluation and activity research. Analysis of the results showed that the incorporation of the higher proportion of starch in the blend (15% v/v) (PVA:S:PAA:PPE4) yielded smooth, transparent, and domain-free films without phase separation. Additionally, the PVA:S:PAA:PPE4 film presented barrier properties suitable for use as a cover. These films, when subjected to the in vitro hemolytic activity assay, were nonhemolytic and biocompatible. No toxicity from the extract was observed at the concentrations studied. The results of the wound healing in vitro test showed that films containing 1.25% PPE are efficient in reducing the scratch open area, provoking almost total closure of the scratches within 48 h without cytotoxicity.


Assuntos
Antibacterianos/química , Bandagens , Membranas Artificiais , Álcool de Polivinil/química , Punica granatum/química , Amido/química , Animais , Linhagem Celular , Camundongos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA