Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 20(26): 2344-2361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32819246

RESUMO

Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.


Assuntos
Osso e Ossos/metabolismo , Condrócitos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Adipócitos/metabolismo , Animais , Ácido Ascórbico/metabolismo , Osso e Ossos/citologia , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Dimetil Sulfóxido/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazonas/metabolismo , Oxigenoterapia Hiperbárica , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Osteoblastos/metabolismo , Serina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
2.
Toxicol Sci ; 132(2): 390-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345579

RESUMO

The phosphoramidate nerve agent tabun inhibits butyrylcholinesterase (BChE) and acetylcholinesterase by making a covalent bond on the active site serine. The adduct loses an alkyl group in a process called aging. The mechanism of aging of the tabun adduct is controversial. Some studies claim that aging proceeds through deamination, whereas crystal structure studies show aging by O-dealkylation. Our goal was to develop a method that clearly distinguishes between deamination and O-dealkylation. We began by studying the tetraisopropyl pyrophosphoramide adduct of BChE because this adduct has two P-N bonds. Mass spectra showed that the P-N bonds were stable during trypsin digestion at pH 8 but were cleaved during pepsin digestion at pH 2. The P-N bond in tabun was also acid labile, whereas the P-O bond was stable. A scheme to distinguish aging by deamination from aging by O-dealkylation was based on the acid labile P-N bond. BChE was inhibited with Sp- and Rp-tabun thiocholine nerve agent model compounds to make adducts identical to those of tabun with known stereochemistry. After aging and digestion with pepsin at pH 2, peptide FGES198AGAAS from Sp-tabun thiocholine had a mass of 902.2 m/z in negative mode, indicating that it had aged by deamination, whereas peptide FGES198AGAAS from Rp-tabun thiocholine had a mass of 874.2 m/z in negative mode, indicating that it had aged by O-dealkylation. BChE inhibited by authentic, racemic tabun yielded both 902.2 and 874.2 m/z peptides, indicating that both stereoisomers reacted with BChE and aged either by deamination or dealkylation.


Assuntos
Butirilcolinesterase/metabolismo , Espectrometria de Massas/métodos , Nitrogênio/metabolismo , Fósforo/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Expert Opin Drug Metab Toxicol ; 4(12): 1507-21, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19040327

RESUMO

This review summarizes some recent observations and information related to the role of the flavin-containing monooxygenase (FMO) in preclinical drug development. Flavin-containing monooxygenase is a complimentary enzyme system to the cytochrome P450 (CYP) family of enzymes and oxygenates several soft, highly polarizable nucleophilic heteroatom-containing chemicals and drugs. The products of FMO-mediated metabolism are generally benign and highly polar, readily excreted materials. There may be some advantages in designing drugs that are metabolized in part by FMO and not exclusively by CYP. In this review, I describe the practical aspects for the participation of FMO in drug and chemical metabolism including: i) the study of FMO using in vitro preparations; ii) some observations about metabolism of drugs and chemicals by FMO in vivo; and iii) the consequences of studying FMO-related metabolism in various small animal models. Some of the preclinical research and development areas related to FMO are not fully mature areas and there are certain gaps in our knowledge. However, I include discussion of these areas to stimulate further work and invite further discussion.


Assuntos
Desenho de Fármacos , Drogas em Investigação/metabolismo , Oxigenases/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Drogas em Investigação/química , Humanos , Estrutura Molecular
4.
Drug Metab Dispos ; 36(8): 1594-605, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18480186

RESUMO

Curcuminoid extract and piperine are being evaluated for beneficial effects in Alzheimer's disease, among other intractable disorders. Consequently, we studied the potential for herb-drug interactions involving cytochrome P450 (P450), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes. The curcuminoid extract inhibited SULT > CYP2C19 > CYP2B6 > UGT > CYP2C9 > CYP3A activities with IC(50) values ranging from 0.99 +/- 0.04 to 25.3 +/- 1.3 microM, whereas CYP2D6, CYP1A2, and CYP2E1 activities were less affected (IC(50) values > 60 microM). Inhibition of CYP3A activity by curcuminoid extract was consistent with competitive inhibition (K(i) = 11.0 +/- 1.3 microM), whereas inhibition of both CYP2C9 and CYP2C19 activities were consistent with mixed competitive-noncompetitive inhibition (10.6 +/- 1.1 and 7.8 +/- 0.9 microM, respectively). Piperine was a relatively selective noncompetitive inhibitor of CYP3A (IC(50) 5.5 +/- 0.7 microM, K(i) = 5.4 +/- 0.3 microM) with less effect on other enzymes evaluated (IC(50) > 29 microM). Curcuminoid extract and piperine inhibited recombinant CYP3A4 much more potently (by >5-fold) than CYP3A5. Pure synthetic curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were also evaluated for their effects on CYP3A, CYP2C9, UGT, and SULT activities. All three curcuminoids had similar effects on CYP3A, UGT, and SULT activity, but demethoxycurcumin (IC(50) = 8.8 +/- 1.2 microM) was more active against CYP2C9 than either curcumin or bisdemethoxycurcumin (IC(50) > 50 microM). Based on these data and expected tissue concentrations of inhibitors, we predict that a p.o. administered curcuminoid/piperine combination is most likely to inhibit CYP3A, CYP2C9, UGT, and SULT metabolism within the intestinal mucosa.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Curcumina/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Sulfotransferases/antagonistas & inibidores , Acetaminofen/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
5.
J Med Chem ; 51(6): 1913-24, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18298057

RESUMO

Substituted aryl and aliphatic amide analogues of 6-naltrexamine were synthesized and used to characterize the binding to and functional activity of human mu-, delta-, and kappa-opioid receptors. Competition binding assays showed 11-25 and 27-31 bound to the mu (K(i) = 0.05-1.2 nM) and kappa (K(i) = 0.06-2.4 nM) opioid receptors. Compounds 11-18 possessed significant binding affinity for the delta receptor (K(i) = 0.8-12.4 nM). Functional assays showed several compounds acted as partial or full agonists of delta or kappa receptors while retaining an antagonist profile at the mu receptor. Structure-activity relationship for aryl amides showed that potent compounds possessed lipophilic groups or substituents capable of hydrogen bonding. Metabolic stability studies showed that 11, 12, and 14 possessed considerable stability in the presence of rat, mouse, or human liver preparations. The ED 50 of inhibition of 10% ethanol self-administration in trained rats, using operant techniques for 11, was 0.5 mg/kg.


Assuntos
Alcoolismo/tratamento farmacológico , Morfinanos/síntese química , Morfinanos/uso terapêutico , Naltrexona , Consumo de Bebidas Alcoólicas , Amidas/química , Animais , Ligação Competitiva , Avaliação Pré-Clínica de Medicamentos , Etanol/administração & dosagem , Humanos , Ligação de Hidrogênio , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Morfinanos/química , Naltrexona/análogos & derivados , Naltrexona/síntese química , Naltrexona/uso terapêutico , Ratos , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
6.
J Med Chem ; 48(1): 224-39, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15634016

RESUMO

A series of 5- and 6-substituted and unsubstituted 3-heteroaromatic analogues of nicotine were synthesized in an effort to delineate the structural requirements for selectively inhibiting human cytochrome P-450 (CYP) 2A6, the major nicotine metabolizing enzyme. Thiophene, substituted thiophene, furan, substituted furan, imidazole, substituted imidazole, pyridine, substituted pyridine, thiazole, and quinoline moieties were used to replace the N-methylpyrrolidine ring of nicotine. Bromo and methyl groups were introduced at the 5-position of the pyridine ring and fluoro, chloro, and methoxy groups were placed at the 6-position of the pyridine ring in order to explore the structure-activity relationship (SAR) of inhibition of CYP2A6. The inhibitory activity of the most potent CYP2A6 inhibitors on the functional activity of human cytochrome P450s 3A4, 2E1, 2B6, 2C9, 2C19, and 2D6 was also examined to determine inhibitor selectivity. We identified 36 compounds that were more potent than nicotine at inhibition of coumarin 7-hydroxylase (CYP2A6) activity. We also found a number of compounds to be highly selective for the inhibition of human CYP2A6 versus the other human CYPs examined.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Nicotina/análogos & derivados , Bioquímica/métodos , Citocromo P-450 CYP2A6 , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Concentração Inibidora 50 , Nicotina/farmacologia , Piridinas/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 12(22): 5983-90, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15498674

RESUMO

A series of 6-beta-arylamidomorphines was synthesized and biologically evaluated. Various aryl substituents were introduced into the arylamidomorphines to examine substituent structure-activity relationships. Competition binding assays showed that compounds 10a-h bound to the mu opioid receptor with high affinity (0.2-0.6 nM). Functional assays showed that compounds 10a-h acted as full mu opioid receptor agonists. The ED(50) of compound 10e.HCl as an analgesic was 12.6 mg/kg in the tail flick latency test in the rat.


Assuntos
Derivados da Morfina/síntese química , Morfina/síntese química , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfina/metabolismo , Morfina/farmacologia , Derivados da Morfina/metabolismo , Derivados da Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
8.
Life Sci ; 74(22): 2739-47, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15043988

RESUMO

Trimethylaminuria (TMAU) is a metabolic disorder characterized by the inability to oxidize and convert dietary-derived trimethylamine (TMA) to trimethylamine N-oxide (TMAO). This disorder has been relatively well-documented in European and North American populations, but no reports have appeared regarding patients in Japan. We identified seven Japanese individuals that showed a low metabolic capacity to convert TMA to its odorless metabolite, TMAO. The metabolic capacity, as defined by the concentration of TMAO excreted in the urine divided by TMA concentration plus TMAO concentration, in these seven individuals ranged from 70 to 90%. In contrast, there were no healthy controls examined with less than 95% of the metabolic capacity to convert TMA to TMAO. The intake of dietary charcoal (total 1.5 g charcoal per day for 10 days) reduced the urinary free TMA concentration and increased the concentration of TMAO to normal values during charcoal administration. Copper chlorophyllin (total 180 mg per day for 3 weeks) was also effective at reducing free urinary TMA concentration and increasing TMAO to those of concentrations present in normal individuals. In the TMAU subjects examined, the effects of copper chlorophyllin appeared to last longer (i.e., several weeks) than those observed for activated charcoal. The results suggest that the daily intake of charcoal and/or copper chlorophyllin may be of significant use in improving the quality of life of individuals suffering from TMAU.


Assuntos
Carvão Vegetal/administração & dosagem , Clorofilídeos/administração & dosagem , Suplementos Nutricionais , Erros Inatos do Metabolismo/dietoterapia , Metilaminas/urina , Adulto , Dieta , Quimioterapia Combinada , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
9.
Curr Drug Metab ; 4(2): 151-70, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12678693

RESUMO

Trimethylaminuria is a rare metabolic disorder that is associated with abnormal amounts of the dietary-derived trimethylamine. Excess unmetabolized trimethylamine in the urine, sweat and other body secretions confers a strong, foul body odor that can affect the individual's ability to work or engage in social activities. This review summarizes the biochemical aspects of the condition and the classification of the disorder into: 1) primary genetic form, 2) acquired form, 3) childhood forms, 4) transient form associated with menstruation, 5) precursor overload and 6) disease states. The genetic variability of the flavin-containing monooxygenase (form 3) that is responsible for detoxication and deodoration of trimethylamine is discussed and put in context with other variant forms of the flavin-containing monooxygenase (forms 1-5). The temporal-selective expression of flavin-containing monooxygenase forms 1 and 3 is discussed in terms of an explanation for childhood trimethylaminuria. Information as to whether variants of the flavin-containing monooxygenase form 3 contributes to hypertension and/or other diseases are presented. Discussion is provided outlining recent bioanalytical approaches to quantify urinary trimethylamine and trimethylamine N-oxide and plasma choline as well as data on self-reporting individuals tested for trimethylaminuria. Finally, trimethylaminuria treatment strategies and nutritional support are described including dietary sources of trimethylamine, vitamin supplementation and drug treatment and issues related to trimethylaminuria in pregnancy and lactation are discussed. The remarkable progress in the biochemical, genetic, clinical basis for understanding the trimethylaminuria condition is summarized and points to needs in the treatment of individuals suffering from trimethylaminuria.


Assuntos
Doenças Metabólicas/enzimologia , Metilaminas/urina , Oxigenases , Animais , Ensaios Clínicos como Assunto , Dieta , Genótipo , Humanos , Hipertensão/enzimologia , Hipertensão/etiologia , Fígado/enzimologia , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/terapia , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/terapia , Odorantes , Oxigenases/química , Oxigenases/genética , Oxigenases/fisiologia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA