Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 13(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34444996

RESUMO

The development of obesity is characterized by the metabolic overload of tissues and subsequent organ inflammation. The health effects of krill oil (KrO) on obesity-associated inflammation remain largely elusive, because long-term treatments with KrO have not been performed to date. Therefore, we examined the putative health effects of 28 weeks of 3% (w/w) KrO supplementation to an obesogenic diet (HFD) with fat derived mostly from lard. The HFD with KrO was compared to an HFD control group to evaluate the effects on fatty acid composition and associated inflammation in epididymal white adipose tissue (eWAT) and the liver during obesity development. KrO treatment increased the concentrations of EPA and DHA and associated oxylipins, including 18-HEPE, RvE2 and 14-HDHA in eWAT and the liver. Simultaneously, KrO decreased arachidonic acid concentrations and arachidonic-acid-derived oxylipins (e.g., HETEs, PGD2, PGE2, PGF2α, TXB2). In eWAT, KrO activated regulators of adipogenesis (e.g., PPARγ, CEBPα, KLF15, STAT5A), induced a shift towards smaller adipocytes and increased the total adipocyte numbers indicative for hyperplasia. KrO reduced crown-like structures in eWAT, and suppressed HFD-stimulated inflammatory pathways including TNFα and CCL2/MCP-1 signaling. The observed eWAT changes were accompanied by reduced plasma leptin and increased plasma adiponectin levels over time, and improved insulin resistance (HOMA-IR). In the liver, KrO suppressed inflammatory signaling pathways, including those controlled by IL-1ß and M-CSF, without affecting liver histology. Furthermore, KrO deactivated hepatic REL-A/p65-NF-κB signaling, consistent with increased PPARα protein expression and a trend towards an increase in IkBα. In conclusion, long-term KrO treatment increased several anti-inflammatory PUFAs and oxylipins in WAT and the liver. These changes were accompanied by beneficial effects on general metabolism and inflammatory tone at the tissue level. The stimulation of adipogenesis by KrO allows for safe fat storage and may, together with more direct PPAR-mediated anti-inflammatory mechanisms, attenuate inflammation.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Euphausiacea/química , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Óleos/farmacologia , Adipogenia/efeitos dos fármacos , Tecido Adiposo/química , Animais , Produtos Biológicos/farmacologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Fígado/química , Masculino , Camundongos
2.
Nutrients ; 13(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067248

RESUMO

Personalized nutrition may be more effective in changing lifestyle behaviors compared to population-based guidelines. This single-arm exploratory study evaluated the impact of a 10-week personalized systems nutrition (PSN) program on lifestyle behavior and health outcomes. Healthy men and women (n = 82) completed the trial. Individuals were grouped into seven diet types, for which phenotypic, genotypic and behavioral data were used to generate personalized recommendations. Behavior change guidance was also provided. The intervention reduced the intake of calories (-256.2 kcal; p < 0.0001), carbohydrates (-22.1 g; p < 0.0039), sugar (-13.0 g; p < 0.0001), total fat (-17.3 g; p < 0.0001), saturated fat (-5.9 g; p = 0.0003) and PUFA (-2.5 g; p = 0.0065). Additionally, BMI (-0.6 kg/m2; p < 0.0001), body fat (-1.2%; p = 0.0192) and hip circumference (-5.8 cm; p < 0.0001) were decreased after the intervention. In the subgroup with the lowest phenotypic flexibility, a measure of the body's ability to adapt to environmental stressors, LDL (-0.44 mmol/L; p = 0.002) and total cholesterol (-0.49 mmol/L; p < 0.0001) were reduced after the intervention. This study shows that a PSN program in a workforce improves lifestyle habits and reduces body weight, BMI and other health-related outcomes. Health improvement was most pronounced in the compromised phenotypic flexibility subgroup, which indicates that a PSN program may be effective in targeting behavior change in health-compromised target groups.


Assuntos
Comportamento Alimentar , Comportamentos Relacionados com a Saúde , Estilo de Vida , Terapia Nutricional/métodos , Estado Nutricional , Adulto , Idoso , Peso Corporal , Dieta/métodos , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Front Endocrinol (Lausanne) ; 12: 601160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815271

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is characterised by dysfunctional lipid metabolism and cholesterol homeostasis, and a related chronic inflammatory response. NAFLD has become the most common cause of chronic liver disease in many countries, and its prevalence continues to rise in parallel with increasing rates of obesity. Here, we evaluated the putative NAFLD-attenuating effects of a multicomponent medicine consisting of 24 natural ingredients: Hepar compositum (HC-24). Methods: Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) with a macronutrient composition and cholesterol content comparable to human diets for 24 weeks to induce obesity-associated metabolic dysfunction, including hepatic steatosis and inflammation. HC-24 or vehicle control was administered intraperitoneally 3 times/week (1.5 ml/kg) for the last 18 weeks of the study. Histological analyses of liver and adipose tissue were combined with extensive hepatic transcriptomics analysis. Transcriptomics results were further substantiated with ELISA, immunohistochemical and liver lipid analyses. Results: HFD feeding induced obesity and metabolic dysfunction including adipose tissue inflammation and increased gut permeability. In the liver, HFD-feeding resulted in a disturbance of cholesterol homeostasis and an associated inflammatory response. HC-24 did not affect body weight, metabolic risk factors, adipose tissue inflammation or gut permeability. While HC-24 did not alter total liver steatosis, there was a pronounced reduction in lobular inflammation in HC-24-treated animals, which was associated with modulation of genes and proteins involved in inflammation (e.g., neutrophil chemokine Cxcl1) and cholesterol homeostasis (i.e., predicted effect on 'cholesterol' as an upstream regulator, based on gene expression changes associated with cholesterol handling). These effects were confirmed by CXCL1 ELISA, immunohistochemical staining of neutrophils and biochemical analysis of hepatic free cholesterol content. Intrahepatic free cholesterol levels were found to correlate significantly with the number of inflammatory aggregates in the liver, thereby providing a potential rationale for the observed anti-inflammatory effects of HC-24. Conclusions: Free cholesterol accumulates in the liver of Ldlr-/-.Leiden mice under physiologically translational dietary conditions, and this is associated with the development of hepatic inflammation. The multicomponent medicine HC-24 reduces accumulation of free cholesterol and has molecular and cellular anti-inflammatory effects in the liver.


Assuntos
Colesterol/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/genética , Receptores de LDL/imunologia
4.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491949

RESUMO

Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for ß-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.


Assuntos
Carnitina/farmacologia , Fígado Gorduroso/metabolismo , Niacinamida/análogos & derivados , Obesidade/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Niacinamida/farmacologia , Obesidade/tratamento farmacológico , Obesidade/genética , Estresse Oxidativo , Compostos de Piridínio , Transdução de Sinais
5.
Plant Biotechnol J ; 4(1): 123-34, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177791

RESUMO

Starch granule size is an important parameter for starch applications in industry. Starch granules are formed in amyloplasts, which are, like chloroplasts, derived from proplastids. Division processes and associated machinery are likely to be similar for all plastids. Essential roles for FtsZ proteins in plastid division in land plants have been revealed. FtsZ forms the so-called Z ring which, together with inner and outer plastid division rings, brings about constriction of the plastid. It has been shown that modulation of the expression level of FtsZ may result in altered chloroplast size and number. To test whether FtsZ is also involved in amyloplast division and whether this, in turn, may affect the starch granule size in crop plants, FtsZ protein levels were either reduced or increased in potato. As shown previously in other plant species, decreased StFtsZ1 protein levels in leaves resulted in a decrease in the number of chloroplasts in guard cells. More interestingly, plants with increased StFtsZ1 protein levels in tubers resulted in less, but larger, starch granules. This suggests that the stoichiometry between StFtsZ1 and other components of the plastid division machinery is important for its function. Starch from these tubers also had altered pasting properties and phosphate content. The importance of our results for the starch industry is discussed.


Assuntos
Proteínas de Plantas/genética , Plastídeos/ultraestrutura , Solanum tuberosum/química , Solanum tuberosum/genética , Amido/química , Sequência de Aminoácidos , Proteínas de Arabidopsis , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Clonagem Molecular , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Tubérculos/química , Tubérculos/genética , Tubérculos/ultraestrutura , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/ultraestrutura , Plastídeos/química , Plastídeos/metabolismo , Regiões Promotoras Genéticas , Solanum tuberosum/ultraestrutura , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA