Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 54: 377-385, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242456

RESUMO

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. STATEMENT OF SIGNIFICANCE: In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Células Progenitoras Endoteliais , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Cálcio/química , Cálcio/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Xenoenxertos , Humanos , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Wistar
2.
Acta Biomater ; 29: 435-445, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26441126

RESUMO

In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. STATEMENT OF SIGNIFICANCE: In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass - poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.


Assuntos
Fosfatos de Cálcio , Cálcio , Ácido Láctico , Membranas Artificiais , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros , Adulto , Animais , Cálcio/química , Cálcio/farmacocinética , Cálcio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Masculino , Camundongos , Poliésteres , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia
3.
ACS Appl Mater Interfaces ; 6(10): 7512-22, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24754868

RESUMO

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass-polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca(2+) release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.


Assuntos
Materiais Biocompatíveis/química , Cálcio/metabolismo , Vidro/química , Poliésteres/química , Silício/química , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Íons/química , Camundongos , Microscopia de Força Atômica , Neovascularização Fisiológica/efeitos dos fármacos , Próteses e Implantes , Ratos , Receptores de Detecção de Cálcio/metabolismo , Pele/patologia , Propriedades de Superfície , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA