Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Metab ; 4(7): 901-917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879461

RESUMO

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Assuntos
Aleitamento Materno , Obesidade , Animais , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Ratos
2.
Nat Metab ; 1(8): 811-829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31579887

RESUMO

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dopamina/metabolismo , Hipotálamo/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Animais , Bromocriptina/administração & dosagem , Bromocriptina/farmacologia , Feminino , Humanos , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Ratos
3.
Nutrients ; 11(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935076

RESUMO

The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of UGN and leptin potentiates leptin's ability to decrease the food intake and body weight in DIO mice, and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K, but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings indicate that UGN improves leptin sensitivity in DIO mice.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Leptina/metabolismo , Peptídeos Natriuréticos/metabolismo , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dieta/efeitos adversos , Hipotálamo/metabolismo , Camundongos , Camundongos Obesos , Obesidade/etiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA