Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 11(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577416

RESUMO

Kombucha is usually obtained from the fermentation of black or green tea by a consortium of acetic acid bacteria and yeasts. In this study, kombucha was prepared from the same starter consortium using green and black teas as well as, for the first time, an infusion of rooibos leaves (Aspalathus linearis). Microbial diversity was analysed during fermentation both in the biofilm and in the corresponding kombuchas, using culture-dependent and -independent methods. Polyphenols, flavonoids, ethanol, and acids were quantified and anti-oxidant activities were monitored. All of the Kombuchas showed similarity in bacterial composition, with the dominance of Komagataeibacter spp. Beta diversity showed that the yeast community was significantly different among all tea substrates, between 7 and 14 days of fermentation and between biofilm and kombucha, indicating the influence of the substrate on the fermenting microbiota. Kombucha from rooibos has a low ethanol concentration (1.1 mg/mL), and a glucuronic acid amount that was comparable to black tea. Although antioxidant activity was higher in black and green kombucha compared to rooibos, the latter showed an important effect on the recovery of oxidative damage on fibroblast cell lines against oxidative stress. These results make rooibos leaves interesting for the preparation of a fermented beverage with health benefits.


Assuntos
Antioxidantes/análise , Aspalathus/química , Bebidas/análise , Chá de Kombucha/análise , Chá/química , Animais , Aspalathus/microbiologia , Bebidas/microbiologia , Linhagem Celular , Etanol/análise , Fermentação , Fibroblastos/metabolismo , Flavonoides/análise , Chá de Kombucha/microbiologia , Camundongos , Estresse Oxidativo , Polifenóis/análise , Chá/microbiologia , Leveduras/metabolismo
2.
Trials ; 17(1): 397, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507236

RESUMO

BACKGROUND: Aging is associated with decreased muscle mass and functional capacity, which in turn decrease quality of life. The number of citizens over the age of 65 years in the Western world will increase by 50 % over the next four decades, and this demographic shift brings forth new challenges at both societal and individual levels. Only a few longitudinal studies have been reported, but whey protein supplementation seems to improve muscle mass and function, and its combination with heavy strength training appears even more effective. However, heavy resistance training may reduce adherence to training, thereby attenuating the overall benefits of training. We hypothesize that light load resistance training is more efficient when both adherence and physical improvement are considered longitudinally. We launched the interdisciplinary project on Counteracting Age-related Loss of Skeletal Muscle Mass (CALM) to investigate the impact of lifestyle changes on physical and functional outcomes as well as everyday practices and habits in a qualitative context. METHODS: We will randomize 205 participants older than 65 years to be given 1 year of two daily nutrient supplements with 10 g of sucrose and 20 g of either collagen protein, carbohydrates, or whey. Further, two groups will perform either heavy progressive resistance training or light load training on top of the whey supplement. DISCUSSION: The primary outcome of the CALM Intervention Study is the change in thigh cross-sectional area. Moreover, we will evaluate changes in physical performance, muscle fiber type and acute anabolic response to whey protein ingestion, sensory adaptation, gut microbiome, and a range of other measures, combined with questionnaires on life quality and qualitative interviews with selected subjects. The CALM Intervention Study will generate scientific evidence and recommendations to counteract age-related loss of skeletal muscle mass in elderly individuals. TRIAL REGISTRATION: ClinicalTrials.gov NCT02034760 . Registered on 10 January 2014. ClinicalTrials.gov NCT02115698 . Registered on 14 April 2014. Danish regional committee of the Capital Region H-4-2013-070. Registered on 4 July 2013. Danish Data Protection Agency 2012-58-0004 - BBH-2015-001 I-Suite 03432. Registered on 9 January 2015.


Assuntos
Protocolos Clínicos , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Treinamento Resistido , Sarcopenia/prevenção & controle , Composição Corporal , Método Duplo-Cego , Etnologia , Comportamento Alimentar , Microbioma Gastrointestinal , Humanos , Metaboloma , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA