Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(7): 4111-4120, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290018

RESUMO

Adsorption and subsequent reduction of U(VI) on Fe(II)-bearing clay minerals can control the mobility of uranium in subsurface environments. Clays such as montmorillonite provide substantial amounts of the reactive surface area in many subsurface environments, and montmorillonite-containing materials are used in the storage of spent nuclear fuel. We investigated the extent of reduction of U(VI) by Fe(II)-bearing montmorillonite at different pH values and sodium concentrations using X-ray absorption spectroscopy and chemical extractions. Nearly complete reduction of U(VI) to U(IV) occurred at a low sodium concentration at both pH 3 and 6. At pH 6 and a high sodium concentration, which inhibits U(VI) binding at cation-exchange sites, the extent of U(VI) reduction was only 70%. Surface-bound U(VI) on unreduced montmorillonite was more easily extracted into solution with bicarbonate than surface-bound U(IV) generated by reduction of U(VI) on Fe(II)-bearing montmorillonite. We developed a nonelectrostatic surface complexation model to interpret the equilibrium adsorption of U(IV) on Fe(II)-bearing montmorillonite as a function of pH and sodium concentration. These findings establish the potential importance of structural Fe(II) in low iron content smectites in controlling uranium mobility in subsurface environments.


Assuntos
Bentonita , Urânio , Adsorção , Bentonita/química , Argila , Minerais , Oxirredução , Urânio/química
2.
Environ Sci Technol ; 50(24): 13486-13494, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993066

RESUMO

Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 µM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 µM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.


Assuntos
Sedimentos Geológicos/química , Urânio/química , Adsorção , Água Subterrânea/química , Fosfatos/química , Poluentes Radioativos da Água
3.
Environ Sci Technol ; 50(6): 3128-36, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26934085

RESUMO

Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake from solution occurred via autunite (Ca(UO2)2(PO4)2) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, a condition at which calcium phosphate solids could form, the uptake mechanism depended on the nature of the calcium and phosphate as determined by X-ray absorption spectroscopy and laser-induced fluorescence spectroscopy. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption was the dominant removal mechanism for uranium contacted with preformed amorphous calcium phosphate solids. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57 ± 4%) of autunite and adsorption (43 ± 4%) onto calcium phosphate. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.


Assuntos
Cálcio/química , Fosfatos/química , Urânio/química , Adsorção , Fosfatos de Cálcio/química , Recuperação e Remediação Ambiental , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Urânio/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Espectroscopia por Absorção de Raios X
4.
Water Res ; 69: 307-317, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25497429

RESUMO

Phosphate amendments can be added to U(VI)-contaminated subsurface environments to promote in situ remediation. The primary objective of this study was to evaluate the impacts of phosphate addition on the transport of U(VI) through contaminated sediments. In batch experiments using sediments (<2 mm size fraction) from a site in Rifle, Colorado, U(VI) only weakly adsorbed due to the dominance of the aqueous speciation by Ca-U(VI)-carbonate complexes. Column experiments with these sediments were performed with flow rates that correspond to a groundwater velocity of 1.1 m/day. In the absence of phosphate, the sediments took up 1.68-1.98 µg U/g of sediments when the synthetic groundwater influent contained 4 µM U(VI). When U(VI)-free influents were then introduced with and without phosphate, substantially more uranium was retained within the column when phosphate was present in the influent. Sequential extractions of sediments from the columns revealed that uranium was uniformly distributed along the length of the columns and was primarily in forms that could be extracted by ion exchange and contact with a weak acid. Laser induced fluorescence spectroscopy (LIFS) analysis along with sequential extraction results suggest adsorption as the dominant uranium uptake mechanism. The response of dissolved uranium concentrations to stopped-flow events and the comparison of experimental data with simulations from a simple reactive transport model indicated that uranium adsorption to and desorption from the sediments was not always at local equilibrium.


Assuntos
Sedimentos Geológicos/química , Fosfatos/química , Urânio/química , Adsorção , Técnicas de Cultura Celular por Lotes , Brometos/química , Lasers , Espectrometria de Fluorescência
5.
Environ Sci Technol ; 47(2): 850-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23227949

RESUMO

The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.


Assuntos
Compostos de Manganês/química , Óxidos/química , Urânio/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Modelos Químicos , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
6.
Environ Sci Technol ; 46(12): 6594-603, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22612235

RESUMO

The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 µM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 Å. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 µM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 Å (U-P) and a single iron shell at ~4.3 Å (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.


Assuntos
Compostos de Ferro/química , Minerais/química , Fosfatos/química , Urânio/química , Estrutura Molecular
7.
Environ Sci Technol ; 43(5): 1373-8, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350906

RESUMO

U(VI) adsorption on aerosol-synthesized hematite particles ranging in size from 12 to 125 nm was studied to explore nanoscale size effects on uranium adsorption. Adsorption on 70 nm aqueous-synthesized particles was also investigated to examine the effect of the synthesis method on reactivity. Equilibrium adsorption was measured over pH 3-11 at two U(VI) loadings. Surface complexation modeling, combined with adjustment of adsorption equilibrium constants to be independent of site density and surface area, provided a quantitative reaction-based framework for evaluating adsorption affinity and capacity. Among the aerosol-synthesized particles, the adsorption affinity decreased as the particle size increased from 12 to 125 nm with similar intermediate affinities for 30 and 50 nm particles. X-ray absorption fine structure spectroscopy measurements suggest that the differences in adsorption affinity and capacity are not the result of substantially different coordination environments of adsorbed U(VI).


Assuntos
Compostos Férricos/química , Nanopartículas/química , Tamanho da Partícula , Urânio/química , Ácidos/química , Adsorção , Álcalis/química , Cinética , Análise Espectral , Propriedades de Superfície , Titulometria
8.
Environ Sci Technol ; 40(8): 2517-24, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16683586

RESUMO

The disposal of basic sodium aluminate and acidic U(VI)-Cu(ll) wastes in the now-dry North and South 300 A Process Ponds atthe Hanford site resulted in a groundwater plume of U(VI). To gain insight into the geochemical processes that occurred during waste disposal and those affecting the current and future fate and transport of this uranium plume, the solid-phase speciation of uranium in a depth sequence of sediments from the base of the North Process Pond through the vadose zone to groundwater was investigated using standard chemical and mineralogical analyses, electron and X-ray microprobe measurements, and X-ray absorption fine structure spectroscopy. Near-surface sediments contained uranium coprecipitated with calcite, which formed due to overneutralization of the waste ponds with base (NaOH). At intermediate depths in the vadose zone, metatorbernite [Cu(UO2PO4)2 x 8H2O] precipitated, likely during pond operations. Uranium occurred predominantly sorbed onto phyllosilicates in the deeper vadose zone and groundwater; sorbed uranium was also an important component at intermediate depths. Since the calcite-bearing pond sediments have been removed in remediation efforts, uranium fate and transport will be controlled primarily by desorption of the sorbed uranium and dissolution of metatorbernite.


Assuntos
Sedimentos Geológicos/análise , Fosfatos/análise , Compostos de Urânio/análise , Urânio/análise , Adsorção , Fosfatos/química , Resíduos Radioativos , Urânio/química , Compostos de Urânio/química , Washington , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA