Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685864

RESUMO

This study investigates the ethanolic extract of dried walnut (Juglans regia L.) shells upon hammer milling (HM) and ball milling (BM) grinding processes. Marked differences were observed in the attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra. The two extracts were investigated by reversed-phase liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (RPLC-ESI-HRMS). Following enzymatic digestion, the fatty acids (FAs) were examined, and tandem MS of epoxidized species was applied to establish the C-C double bond position; the most abundant species were FA 18:2 Δ9,12, FA 18:1 Δ9, and FA 18:3 Δ9,12,15. However, no significant qualitative differences were observed between FAs in the two samples. Thus, the presence of potential active secondary metabolites was explored, and more than 30 phenolic compounds, including phenols, ellagic acid derivatives, and flavonoids, were found. Interestingly, the HM samples showed a high concentration of ellagitannins and hydrolyzable tannins, which were absent in the BM sample. These findings corroborate the greater phenolic content in the HM sample, as evaluated by the Folin-Ciocalteu test. Among the others, the occurrence of lanceoloside A at m/z 391.1037 [C19H20O9-H]-, and a closely related benzoyl derivate at m/z 405.1190 (C20H22O9-H]-), was ascertained. The study provides valuable information that highlights the significance of physical pre-treatments, such as mill grinding, in shaping the composition of extracts, with potential applications in the biorefinery or pharmaceutical industries.


Assuntos
Juglans , Nozes , Cromatografia de Fase Reversa , Indústria Farmacêutica , Etanol , Ácidos Graxos , Taninos Hidrolisáveis , Fenóis , Extratos Vegetais
2.
J Am Soc Mass Spectrom ; 33(11): 2108-2119, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264209

RESUMO

An analytical approach based on reversed-phase liquid chromatography coupled to electrospray ionization Fourier-transform mass spectrometry in negative ion mode (RPLC-ESI-(-)-FTMS) was developed for the untargeted characterization of glucosinolates (GSL) in the polar extracts of four Brassica microgreen crops, namely, garden cress, rapeseed, kale, and broccoli raab. Specifically, the all ion fragmentation (AIF) operation mode enabled by a quadrupole-Orbitrap mass spectrometer, i.e., the systematic fragmentation of all ions generated in the electrospray source, followed by the acquisition of an FTMS spectrum, was exploited. First, the best qualifying product ions for GSL were recognized from higher-energy collisional dissociation (HCD)-FTMS2 spectra of representative standard GSL. Extracted ion chromatograms (EIC) were subsequently obtained for those ions from RPLC-ESI(-)-AIF-FTMS data referred to microgreen extracts, by plotting the intensity of their signals as a function of retention time. The alignment of peaks detected in the EIC traces was finally exploited for the recognition of peaks potentially related to GSL, with the EIC obtained for the sulfate radical anion [SO4]•- (exact m/z 95.9523) providing the highest selectivity. Each putative GSL was subsequently characterized by HCD-FTMS2 analyses and by collisionally induced dissociation (CID) multistage MSn (n = 2, 3) acquisitions based on a linear ion trap mass spectrometer. As a result, up to 27 different GSLs were identified in the four Brassica microgreens. The general method described in this work appears as a promising approach for the study of GSL, known and novel, in plant extracts.


Assuntos
Brassica , Glucosinolatos , Glucosinolatos/análise , Glucosinolatos/química , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons/química , Extratos Vegetais
3.
J Am Soc Mass Spectrom ; 33(5): 823-831, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442668

RESUMO

Water-soluble diacyl arsenosugar phospholipids (As-PL) are natural products widespread in marine animals and algae, including the brown alga Undaria pinnatifida, also known as wakame. The systematic recognition of As-PL has been hampered by the lack of standard and of qualitative methods to establish the carbon-carbon double bond positions of unsaturated fatty acyl chains. Here, the epoxidation reaction of fatty acyl substituents of As-PL was carried out with high selectivity by meta-chloroperoxybenzoic acid and the C-C double bond localization was established by collision-induced dissociation of epoxidized species as deprotonated molecules, [epoM - H]-. Reversed-phase liquid chromatography (RPLC) separation and a sequential triple-stage MS (i.e., MS3) analysis of unsaturated and epoxidized As-PL were very helpful to characterize the carbon-carbon double bond locations of both sn-1 and sn-2 fatty acyl chains, starting from a diagnostic product ion pair with 16.0 Da mass difference. These results indicate that intact As-PL can be annotated in terms of fatty acyl chain composition and in terms of their C-C double bond position(s). Interestingly, hexadecenoic (16:1 Δ9) and octadecenoic (18:1 Δ9) along with octadecadienoic (18:2 Δ9,12) and octadecatrienoic (18:3 Δ9,12,15) were found to be the most abundant unsaturated fatty acyl chains of As-PL in the brown alga wakame, thus confirming it as a good source of essential fatty acids with a balanced ω6/ω3 ratio. Although the toxicity of As-including metabolites of algal As-PL is still a matter of debate and needs to be studied in more detail, the described approach can be exploited to assess if As-PL could contribute to the supply of essential fatty acids related to the use of algae as nutritious food.


Assuntos
Alga Marinha , Undaria , Animais , Arseniatos , Carbono , Monossacarídeos , Fosfolipídeos/análise , Extratos Vegetais , Undaria/química
4.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361633

RESUMO

The lipidome of a brown seaweed commonly known as wakame (Undaria pinnatifida), which is grown and consumed around the world, including Western countries, as a healthy nutraceutical food or supplement, was here extensively examined. The study was focused on the characterization of phospholipids (PL) and glycolipids (GL) by liquid chromatography (LC), either hydrophilic interaction LC (HILIC) or reversed-phase LC (RPLC), coupled to electrospray ionization (ESI) and mass spectrometry (MS), operated both in high and in low-resolution mode. Through the acquisition of single (MS) and tandem (MS/MS) mass spectra more than 200 PL and GL of U. pinnatifida extracts were characterized in terms of lipid class, fatty acyl (FA) chain composition (length and number of unsaturations), and regiochemistry, namely 16 SQDG, 6 SQMG, 12 DGDG, 5 DGMG, 29 PG, 8 LPG, 19 PI, 14 PA, 19 PE, 8 PE, 38 PC, and 27 LPC. The FA (C16:0) was the most abundant saturated acyl chain, whereas the monounsaturated C18:1 and the polyunsaturated C18:2 and C20:4 chains were the prevailing ones. Odd-numbered acyl chains, iJ., C15:0, C17:0, C19:0, and C19:1, were also recognized. While SQDG exhibited the longest and most unsaturated acyl chains, C18:1, C18:2, and C18:3, in the sn-1 position of glycerol, they were preferentially located in the sn-2 position in the case of PL. The developed analytical approach might pave the way to extend lipidomic investigations also for other edible marine algae, thus emphasizing their potential role as a source of bioactive lipids.


Assuntos
Glicolipídeos/análise , Fosfolipídeos/análise , Extratos Vegetais/química , Undaria/química , Lipidômica/métodos
5.
J Am Soc Mass Spectrom ; 32(8): 2227-2240, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34260857

RESUMO

Glucuronic acid containing diacylglycerols (3-(O-α-d-glucuronopyranosyl)-1,2-diacyl-sn-glycerols, GlcA-DAG) are glycolipids of plant membranes especially formed under phosphate-depletion conditions. An analytical approach for the structural characterization of GlcA-DAG in red ripe tomato (Solanum lycopersicum L.) extracts, based on reversed-phase liquid chromatography (RPLC) coupled with electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) using a linear ion trap, is described in this paper. At least 14 GlcA-DAG (R1/R2) species, including four regioisomers, containing three predominant fatty acyl chains C16:0, C18:2, and C18:3, were identified for the first time. Moreover, 29 GlcA-DAG acylated on the glucuronosyl ring (acyl-R3 GlcA-DAG) were discovered, alongside 15 acylated lyso-forms, i.e., acylated 3-(O-α-d-glucuronosyl)monoacylglycerols, abbreviated as acyl-R3 GlcA-MAG (R1/0) or (0/R2). Although many of these acylated lyso-forms were isomeric with GlcA-DAG (i.e., acyl chains with equivalent sum composition), they were successfully separated by reversed-phase liquid chromatography (RPLC) using a solid-core C18 column packed with 2.6 µm particle size. Tandem MS (and eventually MS3) data obtained from sodium adducts ([M + Na]+) and deprotonated molecules ([M - H]-) were fundamental to detect diagnostic product ions related to the glucuronosyl ring and then determine the identity of all investigated glycolipids, especially to recognize the acyl chain linked to the ring. A classification of GlcA-MAG, GlcA-DAG, and acylated GlcA-DAG and GlcA-MAG was generated by an in house-built database. The discovery of acylated derivatives emphasized the already surprising heterogeneity of glucuronic acid-containing mono- and diacylglycerols in tomato plants, stimulating interesting questions on the role played by these glycolipids.


Assuntos
Cromatografia de Fase Reversa/métodos , Glicolipídeos/química , Solanum lycopersicum/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Acilação , Análise de Alimentos/métodos , Glicolipídeos/análise , Monoglicerídeos/análise , Monoglicerídeos/química , Extratos Vegetais/análise , Extratos Vegetais/química
6.
Food Chem ; 242: 497-504, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037720

RESUMO

The present study deals with the evaluation of antidiabetic activities of Fagioli di Sarconi beans (Phaseolus vulgaris), including 21 ecotypes protected by the European Union with the mark PGI (i.e., Protected Geographical Indication), and cultivated in Basilicata (southern Italy). For this purpose, α-glucosidase and α-amylase assays were assessed; among all bean ecotypes, the tight green seed colour of Verdolino extracts exhibited the highest α-glucosidase and α-amylase inhibitory activity with IC50=1.1±0.1µg/ml and IC50=19.3±1.1µg/ml, respectively. Phytochemical compound screening of all Fagioli di Sarconi beans performed by flow injection-electrospray ionization-ultrahigh resolution mass spectrometry (uHRMS) and based on the calculation of elemental formulas from accurate m/z values, was helpful to annotate specific compounds, such as alkaloids, saponins, flavonoids, and terpenoids, which are most likely responsible for their biological activity.


Assuntos
Hipoglicemiantes/química , Phaseolus/química , Compostos Fitoquímicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Flavonoides/química , Inibidores de Glicosídeo Hidrolases/química , Itália , Extratos Vegetais/química , Saponinas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química
7.
Rapid Commun Mass Spectrom ; 31(18): 1499-1509, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28657161

RESUMO

RATIONALE: Sulfoquinovosylmonoglycerides (SQMG) and sulfoquinovosyldiglycerides (SQDG) in the lipid extracts of parsley (Petroselinum crispum) and spinach (Spinacia oleracea) leaves were investigated. The aim of this work was to assess and establish the chemical characterization of fatty acyl chains in sulfolipids (SQMG and SQDG) and their regiochemistry. METHODS: A key component of this approach is a combination of hydrolysis reactions catalyzed by Lecitase® Ultra, which is a sn1 -regioselective hydrolase enzyme, and reversed-phase liquid chromatography with electrospray ionization and sequential mass spectrometry (RPLC/ESI-MS) by collision-induced dissociation (CID)-MSn (n = 2, 3). RESULTS: The occurrence of SQMG bearing 16:0 or 18:3 acyl chains was established for the first time. A regiochemistry-dependent fragmentation pattern of SQMG was attained whereby the sulfoquinovosyl anion ([C6 H11 O8 S]- at m/z 243.0) provides a diagnostic product ion. Regioselective enzymatic treatment also provided a posteriori confirmation of a widely accepted fragmentation rule for SQDG. The sulfoquinovosyl anion was found to play a role also in the fragmentation pattern of SQDG, whose regiochemical assignment could be ultimately confirmed by MS3 experiments. CONCLUSIONS: The predominant sulfolipid in leaf extracts of raw parsley (Petroselinum crispum) and spinach (Spinacia oleracea) was identified as SQDG 18:3/16:0, along with SQMG 18:3/0:0 and SQMG 16:0/0:0. The present CID-MS-based method can be considered a successful approach to validate the regiochemical characterization of sulfolipids paving the way for their unambiguous characterization.


Assuntos
Cromatografia de Fase Reversa/métodos , Diglicerídeos/química , Petroselinum/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Spinacia oleracea/química , Biocatálise , Hidrolases/química , Lipídeos/química , Folhas de Planta/química
8.
J Am Soc Mass Spectrom ; 28(1): 125-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27730524

RESUMO

Bacteriochlorophyll a (BChl a), a photosynthetic pigment performing the same functions of chlorophylls in plants, features a bacteriochlorin macrocycle ring (18 π electrons) with two reduced pyrrole rings along with a hydrophobic terpenoid side chain (i.e., the phytol residue). Chlorophylls analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is not so straightforward since pheophytinization (i.e., release of the central metal ion) and cleavage of the phytol-ester linkage are invariably observed by employing protonating matrices such as 2,5-dihydroxybenzoic acid, sinapinic acid, and α-cyano-4-hydroxycinnamic acid. Using BChl a from Rhodobacter sphaeroides R26 strain as a model system, different electron-transfer (ET) secondary reaction matrices, leading to the formation of almost stable radical ions in both positive ([M]+•) and negative ([M]-•) ionization modes at m/z 910.55, were evaluated. Compared with ET matrices such as trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 2,2':5',2''-terthiophene (TER), anthracene (ANT), and 9,10-diphenylanthracene (DP-ANT), 1,5-diaminonaphthalene (DAN) was found to provide the highest ionization yield with a negligible fragmentation. DAN also displayed excellent ionization properties for two metal ion-substituted bacteriochlorophylls, (i.e., Zn- and Cu-BChl a at m/z 950.49 and 949.49), respectively. MALDI MS/MS of both radical charged molecular species provide complementary information, thus making analyte identification more straightforward. Graphical Abstract ᅟ.


Assuntos
Bacterioclorofila A/química , Cobre/análise , Rhodobacter sphaeroides/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zinco/análise , Transporte de Elétrons , Elétrons
9.
Anal Chim Acta ; 885: 191-8, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26231905

RESUMO

The fatty acids (FAs) composition of lipids extracted from Rhodobacter sphaeroides 2.4.1 was investigated by gas chromatography-mass spectrometry (GC-MS) analysis of the corresponding FA methyl esters (FAMEs), obtained through trans-esterification of the original lipid species. A GC stationary phase based on a highly polar ionic liquid (IL) was selected, aimed to enhance the separation of isomeric FAMEs with particular emphasis on positional and geometrical isomers of monounsaturated 16:1 and 18:1 fatty acyl chains. The occurrence of 18:1 cis-Δ(9) (oleic) acid, a positional isomer of the well-known and most predominant 18:1 cis-Δ(11) (cis-vaccenic) acid, has been demonstrated here for the first time. Furthermore a methyl branched 18:1 FA was also identified and its structure tentatively assigned as 11-methyl-Δ(12)-octadecenoic acid (most likely as trans isomer). The unprecedented observation about 18:1 cis-Δ(9) FA occurrence in R. sphaeroides 2.4.1 is, even indirectly, supported by a biosynthetic pathway postulated with the aid of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The concurrent presence of 16:1 cis-Δ(7) and 18:1 cis-Δ(9) FAs suggested the existence of parallel and/or complementary processes to those invoked for the formation of most common 16:1 cis-Δ(9) and 18:1 cis-Δ(11) FAs. A further route was hypothesized for the trans FAs biosynthesis in wild-type cells of R. sphaeroides.


Assuntos
Ácidos Graxos/análise , Rhodobacter sphaeroides/química , Cromatografia Gasosa-Espectrometria de Massas , Líquidos Iônicos/química , Metilação , Ácido Oleico/análise
10.
Anal Bioanal Chem ; 407(21): 6369-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25976392

RESUMO

Chlorophylls (Chls) are important pigments responsible for the characteristic green color of chloroplasts in algae and plants. In this study, 1,5-diaminonaphthalene (DAN) was introduced as an electron transfer secondary reaction matrix for the identification of intact chlorophylls and their derivatives, by matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). DAN was proved to drastically outperform conventional matrices such as α-cyano-4-hydroxycinnnamic acid, dithranol, antracene, and even terthiophene, since loss of the metal ion and fragmentation of the phytol-ester linkage are negligible. Absence of significant fragmentation of radical cations of Chls a and b at m/z 892.529 and 906.513, respectively, makes MALDI MS capable of following natural degradation of intact porphyrin-based pigments whose initial steps are just represented by demetalation and dephytylation. Chl by-products, such as pyropheophytins, have been identified in dried tea leaves showing the potential of MALDI MS to follow chlorophyll biotransformation occurring in processed foodstuffs. Finally, preliminary results show the potential of MALDI MS to detect illegal vegetable oil re-greening practices.


Assuntos
2-Naftilamina/análogos & derivados , Clorofila/análise , Análise de Alimentos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Verduras/química , 2-Naftilamina/química , Elétrons , Folhas de Planta/química , Óleos de Plantas/análise , Óleo de Girassol , Chá/química
11.
Phytochemistry ; 73(1): 74-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22030302

RESUMO

Glucosinolates (GLSs) are sulfur-rich plant secondary metabolites which occur in a variety of cruciferous vegetables and among various classes of them, genus Brassica exhibits a rich family of these phytochemicals at high, medium and low abundances. Liquid chromatography (LC) with electrospray ionization in negative ion mode (ESI-) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS) was employed for the selective and sensitive determination of intact GLSs in crude sample extracts of broccoli (Brassica oleracea L. Var. italica), cauliflower (B. oleracea L. Var. Botrytis) and rocket salad (Eruca sativa L.) with a wide range of contents. When LTQ and FTICR mass analyzers are compared, the magnitude of the limit of detection was ca. 5/6-fold lower with the FTICR MS. In addition, the separation and detection by LC-ESI-FTICR MS provides a highly selective assay platform for unambiguous identification of GLSs, which can be extended to lower abundance (minor) GLSs without significant interferences of other compounds in the sample extracts. The analysis of Brassicaceae species emphasized the presence of eight minor GLSs, viz. 1-methylpropyl-GLS, 2-methylpropyl-GLS, 2-methylbutyl-GLS, 3-methylbutyl-GLS, n-pentyl-GLS, 3-methylpentyl-GLS, 4-methylpentyl-GLS and n-hexyl-GLS. The occurrence of these GLSs belonging to the saturated aliphatic side chain families C(4), C(5) and C(6), presumably formed by chain elongation of leucine, homoleucine and dihomoleucine as primary amino acid precursors, is described. Based on their retention behavior and tandem MS spectra, all these minor compounds occurring in plant extracts of B. oleracea L. Var. italica, B. oleracea L. Var. Botrytis and E. sativa L. were tentatively identified.


Assuntos
Brassicaceae/química , Cromatografia Líquida/métodos , Glucosinolatos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Brassicaceae/genética , Ciclotrons , Glucosinolatos/química , Itália , Estrutura Molecular
12.
Anal Chem ; 82(13): 5686-96, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20521824

RESUMO

An approach is presented that can be of general applicability for structural elucidation of naturally occurring glucosinolates (GLSs) in crude plant extracts based on the fragmentation of isotopic A and A + 2 peaks. The most important fragmentation pathways were studied by tandem mass spectrometry (MS(n), n = 2, 3) using a linear quadrupole ion trap (LTQ) upon GLSs separation by optimized reversed-phase liquid chromatography (RPLC) and electrospray ionization (ESI) in negative ion mode. As the LTQ MS analyzer ensures high sensitivity and linearity, the fragmentation behavior under collision induced dissociation (CID) of the isotopic peaks A and A + 2 as precursor ions was carefully examined. All GLSs (R-C(7)H(11)O(9)NS(2)(-)) share a common structure with at least two sulfur atoms and significant isotopic abundance of (34)S. Thus, dissociation of the +2 Da isotopomeric ions results in several fragment ion doublets containing a combination of (32)S and (34)S. Accordingly, their relative abundances allow one to speed up the structural recognition of GLSs with great confidence, as it produces more structurally informative ions than conventional tandem MS performed on A ions. This approach has been validated on known GLSs bearing two, three, four, and six sulfur atoms by comparing expected and measured isotopic peak abundance ratios (I(A)/I(A)(+2)). Both group- and compound-specific fragments were observed; the predominant pathway of fragmentation of GLSs gives rise to species having the following m/z values, [M - SO(3) - H](-), [M - 196 - H](-), [M - 178 - H](-), and [M - 162 - H](-) after H rearrangement from the R- side chain. The present strategy was successfully applied to extracts of rocket salad leaves (Eruca sativa L.), which was sufficient for the chemical identification of a not already known 6-methylsulfonyl-3-oxohexyl-GLS, a long-chain-length aliphatic glucosinolate, which contains three sulfurs and exhibits a deprotonated molecular ion at m/z 494.1.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Glucosinolatos/química , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Brassicaceae/química , Folhas de Planta/química , Isótopos de Enxofre/química , Espectrometria de Massas em Tandem
13.
Methods Mol Biol ; 384: 171-203, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392571

RESUMO

This chapter examines the role of capillary electrophoresis (CE) in the separation of tropane alkaloids, glycoalkaloids, and closely related compounds that have either pharmaceutical value or toxicological effects on humans. The latest significant developments in CE analysis have been selected and critically discussed. When the conventional CE mode was found unable to provide an acceptable selectivity towards the analytes, the addition of either an organic solvent, a chiral selector, or a surfactant to the running buffers was exploited. Likewise, nonaqueous CE (NACE) was also employed to increase solute solubilities and for a better compatibility of this media with mass spectrometry. It turns out that, upon selecting the most appropriate experimental conditions, the CE separation of tropane alkaloids and steroidal glycoalkaloids of Solanaceae plants was successfully accomplished. All major steps involved in the separation and detection of these secondary metabolites in complex samples are described and the relevant aspects of each application are examined with emphasis on the main aspects entailed a typical assay. More applications have yet to be developed in order to encourage more labs to exploit the tremendous potential of capillary electrophoresis.


Assuntos
Alcaloides/isolamento & purificação , Eletroforese Capilar/métodos , Solanaceae/química , Tropanos/isolamento & purificação , Alcaloides/análise , Alcaloides/química , Atropina/análise , Atropina/química , Atropina/isolamento & purificação , Derivados da Atropina/química , Derivados da Atropina/isolamento & purificação , Cromatografia Capilar Eletrocinética Micelar , Fluorescência , Imunoensaio , Lasers , Fenilpropionatos/química , Fenilpropionatos/isolamento & purificação , Extratos Vegetais/química , Escopolamina/análise , Escopolamina/química , Escopolamina/isolamento & purificação , Alcaloides de Solanáceas/análise , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Tropanos/análise , Tropanos/química
14.
Rapid Commun Mass Spectrom ; 21(14): 2374-88, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17590871

RESUMO

A method for the comprehensive profiling of intact glucosinolates (GLSs), major and minor, occurring in leaves and seeds of rocket salad (Eruca sativa L.) is presented using optimized reversed-phase liquid chromatography (RP-LC) with electrospray ionization (ESI) ion trap mass spectrometry (ITMS). ESI-ITMS in the negative mode was confirmed to be very suitable to analyze these compounds in crude extracts. After extraction from the plant material with methanol/water (70:30 v/v) at 70 degrees C, the analytes of interest were separated on a C18 column using an eluent acidified with formic acid (0.1%) and modified with acetonitrile. All the GLSs found in leaves of rocket salad gave good signals corresponding to the deprotonated precursor ion, [M-H]-. Although the mass spectra also exhibited an analytically important non-covalent adduct ion at [2M-H]-, the structures of glucosinolates were confirmed by extensive sequential MS analysis, thereby substantially improving the identification of unknown compounds. The results obtained not only revealed in leaves of E. sativa at least twelve species of GLSs including seven aliphatic compounds (glucoraphanin with [M-H]- at m/z ratio of 436, glucoerucin at m/z 420, 4-mercaptobutyl-GLS at m/z 406, progoitrin/epiprogoitrin at m/z 388, sinigrin at m/z 358, 4-methylpentyl- and n-hexyl-GLS at m/z 402) and three indole glucosinolates (i.e., three N-heterocyclic compounds: 4-hydroxyglucobrassicin and 5-hydroxyglucobrassicin at m/z 463, and 4-methoxy-glucobrassicin at m/z 477), but also two structurally related compounds containing one intermolecular disulfide linkage (4-(beta-D-glucopyranosyldisulfanyl)butyl-GLS at m/z 600 and a dimeric 4-mercaptobutyl-GLS at m/z 811). This latter symmetric disulfide was previously considered as an artefact formed during extraction of GLSs from vegetative tissues. Glucosinolates were detected in the leaves with a wide range of contents (10-200 micromol/g) and a great variation in the composition. Only three GLSs were identified in seeds of rocket salad, namely glucoraphanin, glucoerucin and 4-methoxyglucobrassicin. As expected, the most abundant GLS in seeds is glucoerucin. The feasibility of the strategy was also demonstrated using a rapeseed extract of certified reference material (BCR367R). The results indicated the usefulness of this method for a rapid, sensitive and comprehensive profiling of the GLS family naturally occurring in extracts of crude plant matter.


Assuntos
Brassicaceae/química , Cromatografia Líquida/métodos , Glucosinolatos/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Glucosinolatos/análise
15.
Rapid Commun Mass Spectrom ; 19(21): 3103-10, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16200652

RESUMO

Steroidal glycoalkaloids (SGAs) extracted from tomato leaves and berries (Lycopersicon esculentum Mill.) were separated and identified using optimized reversed-phase liquid chromatography with electrospray ionization (ESI) and ion trap mass spectrometry (ITMS). The ESI source polarity and chromatographic conditions were evaluated. The ESI spectra contain valuable information, which includes the mass of SGAs, the mass of the aglycones, and several characteristic fragment ions. Cleavage at the interglycosidic bonds proximal to the aglycones is the most prominent process in the ESI process. A protonated molecule, [M+H]+, accompanied by a mixed adduct ion, [M+H+Na]2+, was observed for alpha-tomatine (i.e., m/z 1034.7 and 528.9) and dehydrotomatine (i.e., m/z 1032.6 and 527.9) in positive ion mode spectra. The structures of these tomato glycoalkaloids were confirmed using tandem mass spectrometry. The identification of a new alpha-tomatine isomer glycoalkaloid, named filotomatine (MW 1033), which shares a common tetrasaccharide structure (i.e., lycotretraose) with alpha-tomatine and dehydrotomatine, and soladulcidine as an aglycone, is described for the first time. It occurs in significant amounts in the extracts of wild tomato foliage. Multistage mass spectrometry both of the protonated molecules and of the doubly charged ions was used for detailed structural elucidation of SGAs. Key fragmentations and regularities in fragmentation pathways are described and the fragmentation mechanisms involved are proposed.


Assuntos
Cromatografia Líquida de Alta Pressão , Solanum lycopersicum/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Tomatina/análogos & derivados , Extratos Vegetais/química , Tomatina/química
16.
Phytochem Anal ; 14(3): 176-83, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12793466

RESUMO

A simple method is described for the determination of the ionic content of vegetable samples by ion chromatography with suppressed conductivity detection. Extracts of leaves of cucumber (Cucumis sativus), leaves and cotyledons of watermelon (Citrullus lanantus), cotyledons of zucchini (Cucurbitapepo), and leaves and roots of olive (Olea europaea) obtained at room temperature yielded chromatographic profiles with substantial differences in the relative contents of Cl-, NO3-, HPO4(2-) and SO4(2-) as well as of Na+, NH4+, K+, Mg2+ and Ca2+. Although NO3-, Cl- and K+ were common to each extracted sample and accounted for most of the ions present, two additional anion peaks (i.e. malate and oxalate) were detected. Among the vegetable tissues investigated, olive roots contained a considerable amount of oxalate (37 mg/g dry weight), while Na+, which is present in very low amount in extracted samples of leaves and cotyledons, represented ca. 30% of the cationic content of olive roots. In all the examined tissue extracts, K+ was the main cation (16-55 mg/g dry weight) and NO3-, Cl- and HPO4(2-) were the main inorganic anions.


Assuntos
Ânions/análise , Cátions/análise , Cromatografia/métodos , Extratos Vegetais/química , Ânions/química , Cátions/química , Condutividade Elétrica , Magnoliopsida/química , Folhas de Planta/química , Raízes de Plantas/química , Reprodutibilidade dos Testes
17.
Anal Bioanal Chem ; 375(6): 799-804, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12664181

RESUMO

The glycoalkaloid content of transgenic potatoes was evaluated by an optimised method based on non-aqueous capillary electrophoresis coupled on-line with electrospray ionization-mass spectrometry (NACE-ESI-MS). The potato material consisted of tubers from a conventional cv. Désirée and from three lines of modified plants resistant, intermediate and susceptible to infection by potato virus Y (PVY). The main glycoalkaloids were confirmed to be alpha-solanine and alpha-chaconine with parent ion masses m/z 852 and 868, respectively. In addition, an unknown minor peak at m/z 850.6 was found both in conventional (control) and susceptible line potato tubers. Such a compound exhibited an MS(2) spectrum with fragments ions at 704 and 396 m/z derived by loss of two ions, i.e. m/z 146 and 307, most likely corresponding to a rhamnose unit and a [glucose-(rhamnose)(2)] moiety, respectively. Up to 30-80-fold higher concentrations of total glycoalkaloids were found in the peel compared to flesh samples of all tubers examined. TGA content was nearly doubled in peel samples of resistant compared to control lines, and these levels were lower than the limit recommended for food safety, i.e. 20-60 mg of TGA per 100 g fresh weight. Moreover, it was established that tubers produced by virus-resistant clones are substantially equivalent in glycoalkaloid contents to those produced by conventional potato varieties.


Assuntos
Eletroforese Capilar/métodos , Raízes de Plantas/química , Vírus de Plantas/fisiologia , Alcaloides de Solanáceas/análise , Solanum tuberosum/química , Solanum tuberosum/genética , Espectrometria de Massas por Ionização por Electrospray/métodos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Soluções
18.
Electrophoresis ; 23(17): 2904-12, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12207298

RESUMO

Glycoalkaloids are naturally occurring nitrogen-containing compounds present in many species of the family Solanaceae, including cultivated and wild potatoes (Solanum spp.), tomatoes (Lycopersicon spp.), etc. These compounds have pharmacological and toxicological effects on humans due to their significant anticholinesterase activity and disruption of cell membranes. Herein is reported the development of a capillary electrophoresis (CE) method using nonaqueous (NA) separation solutions in combination with ion trap mass spectrometry (MS and MS/MS) detection for the identification and quantification of glycoalkaloids and their relative aglycones. A mixture 90:10 v/v of MeCN-MeOH containing 50 mM ammonium acetate and 1.2 M acetic acid (applied voltage of 25.5 kV) was selected as a good compromise for the separation and detection of these compounds. The electrospray MS measurements were carried out in the positive ionization mode using a coaxial sheath liquid, methanol-water (1:1) with 1% of acetic acid at a flow rate of 2.5 microL/min. Under optimized experimental conditions, the predominant ion was the protonated molecular ion ([M+H](+)) of solanidine (m/z = 398), tomatidine (m/z = 416), chaconine (m/z = 852), solanine (m/z = 868), and tomatine (m/z = 1034). MS/MS experiments were carried out systematically by changing the relative collisional energy and monitoring the intensities of the fragment ions that were not high enough to allow better quantification than with the mother ions. The method was used for analyzing glycoalkaloids in potato extracts.


Assuntos
Eletroforese Capilar/métodos , Alcaloides de Solanáceas/análise , Solanum lycopersicum/química , Extratos Vegetais/química , Solanum tuberosum/química , Solventes , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA