Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 10(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36289770

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are some of the most widely used drugs due to their anti-inflammatory, analgesic and antipyretic pharmacological effects. Gastrointestinal side effects are some of the most severe and frequent side effects of NSAIDs. These depend on the balance of the gut microbiome, the abundance of Gram-negative bacteria, and the amount of lipopolysaccharide released. Therefore, restoring or improving gut bacteria balance with probiotic supplements could prove to be an adjuvant therapy against mild NSAID-induced enteropathy. Twenty-five Wistar albino male rats were divided into five groups. The negative control group was administered carboxymethylcellulose and the positive control group diclofenac (DIC), 8 mg/kg for 7 days, which represented the enteropathy model. Treatment groups consisted of a combination of pro-biotic spores (MSB), amino acids and immunoglobulins supplement (MM), which were also administered for 7 days. We analyzed hepatic injury markers (AST, ALT) and creatinine, and inflammatory markers, IL-6, TNF-α, PGE2, iNOS, as well as total antioxidant capacity. The results obtained in the present study suggest that the modulation of the intestinal microbiota by administration of probiotics (Bacillus spores), alone or in combination with immunoglobulins and amino acids, represents an attractive therapy for the prevention of NSAID-induced enteropathy.

2.
Nutrients ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255321

RESUMO

In inflammatory bowel disease (IBD), experimental models have proven to be important tools for evaluating potential therapeutic agents and for investigating the mechanisms of pathogenesis. Oxidative stress and the immune response have been associated with acetic acid (AA)-induced ulcerative colitis (UC). Our study aimed to evaluate, for the first time, the ability of a spore-based probiotic and an amino acid and immunoglobulin supplement in reducing tissue damage and inflammatory responses in an experimental animal model of UC. Forty-two Wistar rats were divided into six groups, receiving 1% carboxymethylcellulose, 4% AA, MegaSporeBiotic™ (MSB; 1 × 109 colony forming units/day) and MegaMucosa™ (MM; 70 mg/100 g/day). Pretreatment with MSB or MM alone and in combination significantly lowered inflammation and reduced damage to the colonic mucosa. Pretreatment with these agents resulted in levels of proinflammatory cytokines, vascular tight junction proteins, and measures of oxidative stress similar to those reported for methylprednisolone, one of the first-line therapies for moderate to severe activity of UC. The protection was further confirmed by histologic analysis of the colon tissue. In conclusion, pretreatment with probiotic spore-forming Bacillus strains and a supplement of amino acids in combination with immunoglobulins exhibited anti-inflammatory and antioxidant effects in an AA-induced rat model of UC.


Assuntos
Aminoácidos/farmacologia , Bacillus/metabolismo , Colite Ulcerativa/tratamento farmacológico , Imunoglobulinas/farmacologia , Probióticos/farmacologia , Esporos Bacterianos/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA